In this PR, we are implementing Functionalization on pre-dispatch graph. Today, every dispatch key except for Dispatchkey.Python has a dedicated mode stack in python. PreDispatch tracing relies on this behaviour by pushing ProxyTorchDispatchMode to Dispatchkey.PreDispatch mode stack and handle the dispatching logic in python. To make pre-dispatch functionalization work, we now need to push FunctionalTensorMode on DispatchKey.PreDispatch mode stack and make sure it runs before ProxyTorchDispatchMode. (this is very similar to how post-dispatch tracing work). Here are some design decisions we made for this flow to work:
1. FunctionalTensorMode internally calls C++ functionalize key. Since C++ functionalization goes after PreDispatch, if we are not careful, we will keep re-entering into PreDispatch key. We solve this by directly dispatching to C++ Functionalize key.
2. We delete mode_stack_per_key logic because the only realistic time it is exercised is for PreDispatch and it is in general not safe to have a plain list because FunctionalTensorMode and ProxyTorchDispatchMode ordering matter and it is hard to enforce it on plain list. Instead, now we have a private class that tracks PreDispatch mode stack.
3. We will still run CompositeImplicitAutograd decomps in this PR, and disable this logic later as a followup.
Some missing bits after this PR:
1. Preserving autograd ops in a functional form. Right now they still show up in the graph but in a "non-functional" way.
2. Turn off CompositeImplicitAutograd decomps
3. Functionalizing HOO
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113728
Approved by: https://github.com/bdhirsh
Summary: During the inference time the intermediate graphs for optimization are not used so the Executor's graph is the only graph we need to keep around these two flags
Test Plan:
the FLAGS are all off by default
baseline
```
buck run mode/opt-clang sigrid/predictor/client/localnet:run_model -- --model_id_to_load=951679039 --model_snapshot_to_load=244 --torch_jit_do_not_store_optimized_graph=true
I1212 10:24:20.407408 401092 SigridPredictorLocalModelFactory.cpp:32] Memory usage for 951679039_244 is 182863 Kb
```
```
buck run mode/opt-clang sigrid/predictor/client/localnet:run_model -- --model_id_to_load=951679039 --model_snapshot_to_load=244 --torch_jit_do_not_store_optimized_graph=true --torch_jit_release_profiling_graph_after_optimization=true
I1212 10:31:37.663487 464000 SigridPredictorLocalModelFactory.cpp:32] Memory usage for 951679039_244 is 186127 Kb
```
```
buck run mode/opt-clang sigrid/predictor/client/localnet:run_model -- --model_id_to_load=951679039 --model_snapshot_to_load=244 --torch_jit_do_not_store_optimized_graph=true --torch_jit_release_profiling_graph_after_optimization=true --torch_jit_execution_plan_avoid_extra_graph_copy=true
I1212 10:29:42.848093 447218 SigridPredictorLocalModelFactory.cpp:32] Memory usage for 951679039_244 is 129451 Kb```
Differential Revision: D52081631
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115657
Approved by: https://github.com/houseroad
Summary:
Refactor update inactive constant buffer to allow updating with active
buffer.
Test Plan:
Existing test to test inactive buffer updates.
UpdateConstantsCuda in cpp test for active buffer updates.
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116001
Approved by: https://github.com/chenyang78
Helps call attention to any cases where the dump actually times out.
The timeout is likely to hit if we run into slow stacktrace processing.
Log any exceptions encountered in the background thread, but don't raise
them- we're already willing to abandon the debug dump, and want to
proceed with our normal execution (in the case of dumppipe) or shutdown
process (when dumping happens on timeout and shutdown is already
initiated).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115876
Approved by: https://github.com/zdevito
ghstack dependencies: #115807
## Summary
This PR added 3 intra-node GPU allreduce algorithms to PyTorch:
- One-shot allreduce (inspired by FasterTransformer): all ranks simultaneously read and accumulate data from other ranks.
- Two-shot allreduce (inspired by FasterTransformer): all ranks simultanesouly read and accumulate `1 / world_size` data from other ranks. Then all ranks read accumulated data from other ranks. (effectively one-shot reduce-scatter + one-shot all-gather).
- Hybrid cube mesh allreduce (original): a one-shot allreduce variant that avoids transmission over PCIe on HCM topology.
## Micro Benchmarks



## Details
The intra-node algos are organized behind `c10d::IntraNodeComm`, which is responsible for:
- Managing handshaking and cuda IPC handle exchange among ranks.
- Querying NVLink connection and detecting topology.
- Performing algo selection based on available info.
- Launching the selected allreduce kernel.
`c10d::IntraNodeComm` is integrated into `c10d::ProcessGroupNCCL` as follows:
- When the `ENABLE_INTRA_NODE_COMM` environment variable is set, `c10d::ProcessGroupNCCL` initialize a `c10d::IntraNodeComm` for its ranks.
- If the setup is not suitable for intra-node comm (e.g. not all ranks are from the same node), the rendezvous logic guarantees all participants fall back consistently.
- `c10d::ProcessGroupNCCL::allreduce` consults `c10d::IntraNodeComm` whether to use intra-node allreduce and carries out the communication accordingly.
We currently detect two types of topoloies from the nNVLink connection mesh:
- Fully connected: all GPU pairs has direct NVLink connection (e.g. NVSwitch or fully connected sub-set of hybrid cube mesh)
- `msg <= 256KB`: one-shot allreduce.
- `256KB < msg <= 10MB`: two-shot allreduce.
- `msg > 10MB`: instructs the caller to fallback to NCCL.
- Hybrid cube mesh
- `msg <= 256KB`: one-shot allreduce.
- `msg > 256KB`: instructs the caller to fallback to NCCL.
## Next Steps
- Fine tune algo selection based on GPU model, topology, link speed.
- Potentially optimize the two-shot allreduce impl. Accroding to FasterTransformer, two-shot allreduce is preferred until 50MB. There might be room for improvement, but PyTorch does impose more constraints:
- FasterTransformer uses a single process to drive multiple devices. It can use `cudaDeviceEnablePeerAccess` enable device-level peer access.
- PyTorch uses multiple process to drive multiple devices. With cuda IPC, a device can only share a specific region to other devices. This means extra copies may be unavoidable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114001
Approved by: https://github.com/yf225
The mutex was originally added to avoid racing to dump debuginfo,
where a race in this case would result in a corrupted dump file.
The reason a mutex helps is that it forces all dump requests to be
serialized, so that an observer would either see an in-progress file, a
complete file, or no file. Without a mutex, a fourth state is possible
(a file that has been written to by multiple threads and is invalid).
Becuase the mutex was a ProcessGroupNCCL class member, and each PG
instance has its own watchdog thread that can launch a dump, it was not
doing its job. Making the mutex static shares it between instances of
the class and ensures serialization of dumps triggered by any PG.
(Note: dumps triggered by different PGs have the same, global contents
anyway- there is only one global flight recorder, so it doesn't matter
who triggers it.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115803
Approved by: https://github.com/kwen2501
ghstack dependencies: #115771, #115798, #115800, #115801
Adds a PG {process group uid} prefix component to logs.
This is helpful in situations where there are multiple processgroups,
and rank information by itself is confusing. (For example rank0 on PG1
may correspond to rank3 on PG0. People may assume 'rank0' references
the global (PG0) world, but it may reference a sub-pg. Prefacing the PG
helps clarify this.
Does NOT change logs from inside WorkNCCL functions, since WorkNCCL
doens't know what PG ID it corresponds to. Will address these logs
separately.
Example:
```
[I ProcessGroupNCCL.cpp:787] [PG 0 Rank 0] ProcessGroupNCCL initialization ...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115801
Approved by: https://github.com/fduwjj
ghstack dependencies: #115771, #115798, #115800
Put the repeated code that string formats [Rank {rank}] in one place.
Sets up for the next PR that also adds more info to this prefix.
(Does not change exception messages, which could be done as well.
Exception messages are not formatted quite the same way. Tries
instead to keep from changing log behavior (in this PR) and only
refactor code.
Did limited testing (some logs were observed OK).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115800
Approved by: https://github.com/fduwjj
ghstack dependencies: #115771, #115798
The NCCL flight recorder is per-process (it is shared by all
processgroups), but individual process groups used to construct their
own pipe for being signaled to dump the flight recorder.
This ensures that only one pipe per process is created, by only creating
the pipe on the first ProcessGroup (uid_ == 0) which should be the world
group.
Filenames are still keyed off of rank, but this should now be global
rank instead of sub-pg rank, making the filenames unique across the
whole trainer process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115798
Approved by: https://github.com/zdevito
ghstack dependencies: #115771
## Summary
This PR added 3 intra-node GPU allreduce algorithms to PyTorch:
- One-shot allreduce (inspired by FasterTransformer): all ranks simultaneously read and accumulate data from other ranks.
- Two-shot allreduce (inspired by FasterTransformer): all ranks simultanesouly read and accumulate `1 / world_size` data from other ranks. Then all ranks read accumulated data from other ranks. (effectively one-shot reduce-scatter + one-shot all-gather).
- Hybrid cube mesh allreduce (original): a one-shot allreduce variant that avoids transmission over PCIe on HCM topology.
## Micro Benchmarks



## Details
The intra-node algos are organized behind `c10d::IntraNodeComm`, which is responsible for:
- Managing handshaking and cuda IPC handle exchange among ranks.
- Querying NVLink connection and detecting topology.
- Performing algo selection based on available info.
- Launching the selected allreduce kernel.
`c10d::IntraNodeComm` is integrated into `c10d::ProcessGroupNCCL` as follows:
- When the `ENABLE_INTRA_NODE_COMM` environment variable is set, `c10d::ProcessGroupNCCL` initialize a `c10d::IntraNodeComm` for its ranks.
- If the setup is not suitable for intra-node comm (e.g. not all ranks are from the same node), the rendezvous logic guarantees all participants fall back consistently.
- `c10d::ProcessGroupNCCL::allreduce` consults `c10d::IntraNodeComm` whether to use intra-node allreduce and carries out the communication accordingly.
We currently detect two types of topoloies from the nNVLink connection mesh:
- Fully connected: all GPU pairs has direct NVLink connection (e.g. NVSwitch or fully connected sub-set of hybrid cube mesh)
- `msg <= 256KB`: one-shot allreduce.
- `256KB < msg <= 10MB`: two-shot allreduce.
- `msg > 10MB`: instructs the caller to fallback to NCCL.
- Hybrid cube mesh
- `msg <= 256KB`: one-shot allreduce.
- `msg > 256KB`: instructs the caller to fallback to NCCL.
## Next Steps
- Fine tune algo selection based on GPU model, topology, link speed.
- Potentially optimize the two-shot allreduce impl. Accroding to FasterTransformer, two-shot allreduce is preferred until 50MB. There might be room for improvement, but PyTorch does impose more constraints:
- FasterTransformer uses a single process to drive multiple devices. It can use `cudaDeviceEnablePeerAccess` enable device-level peer access.
- PyTorch uses multiple process to drive multiple devices. With cuda IPC, a device can only share a specific region to other devices. This means extra copies may be unavoidable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114001
Approved by: https://github.com/yf225
We were only passing a subset of the group creation information to the
NCCL PG. We are specifically missing the information on which global
ranks belong to a particular PG.
This allows the NCCL PG to use this additional information for things
like better trace logging.
Test Plan:
OSS CI
Reviewers:
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114736
Approved by: https://github.com/kwen2501
This implements an optional alternate interface to the AOTI
generated DSO, intended to increase efficiency for models running on
CPU and requiring minimal overhead. See comment in config.py for more
explanation.
This took a while to get right (e.g., I initially required 1-D
MiniArrayRef<T> for the inputs, but found that multi-dimensional
ArrayRefTensor<T> ended up simplifying the implementation and allowed
test_aot_inductor.py to run) and is somewhat intricate, so I am
anticipating that review will require some back-and-forth.
Differential Revision: [D50699890](https://our.internmc.facebook.com/intern/diff/D50699890/)
**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D50699890/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112800
Approved by: https://github.com/chenyang78
Fixes#50051.
This PR is based on #50320 and I address the last feedback.
On Windows it is enabled by default. Can be enabled or disabled via USE_CUSTOM_TERMINATE env variable.
This PR adds support for overriding the terminate handler in order to log uncaught exceptions in the threads.
If an exception is thrown and not caught, it will print <Unhandled exception caught in c10/util/AbortHandler.h>
The point of doing this is that in issue #50051, exceptions were thrown but not logged. With this logging system it will be easier to debug it in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101332
Approved by: https://github.com/albanD, https://github.com/malfet
This changes cached thread_local tensors to stack-allocated buffers. Since we were incidentally caching output in a thread_local, I had to add manual thread_local caching of outputs, which I implemented by caching a buffer and a Tensor whose storage is that buffer and then just memcpying the result into the cached buffer every time. Ideally, memory planning would be able to identify allocations that are the backing storage for outputs, but this should be good enough in the absence of planning.
Differential Revision: [D50416438](https://our.internmc.facebook.com/intern/diff/D50416438/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112116
Approved by: https://github.com/jansel, https://github.com/desertfire
We added a monitor thread in NCCL PG in https://github.com/pytorch/pytorch/pull/112518. To summarize what we are doing in monitor thread: it listens to the heartbeat from watchdog thread and detect unhealthy nccl watchdog hang (due to several reasons such as nccl/cuda API bugs or unexpected blocking behaviors). This is the last resort to ensure that we don't silently keep the training job run for hours.
We didn't open this feature as default, since we want to perform more due diligence and have some customers to try it out. So far, we didn't see any obstacle which blocks turning on this feature and received positive feedback from users. We now decided to turn in on by default in this PR.
If this feature turns out not to work as expected and disturb one's training process, one can set `TORCH_NCCL_ENABLE_MONITORING=0` to disable this feature. Please kindly file an issue with us so that we can see if we missed any corner cases during the design.
Differential Revision: [D52045911](https://our.internmc.facebook.com/intern/diff/D52045911)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115577
Approved by: https://github.com/wconstab, https://github.com/kwen2501
Prerequisite for adding more complex type support and FFT operation
Check using `conjugateWithTensor:name:` selector defined as follows
```objc
/// Returns the complex conjugate of the input tensor elements.
///
/// - Parameters:
/// - tensor: The input tensor.
/// - name: An optional string which serves as an identifier for the operation..
/// - Returns: A valid `MPSGraphTensor` object containing the elementwise result of the applied operation.
-(MPSGraphTensor *) conjugateWithTensor:(MPSGraphTensor *) tensor
name:(NSString * _Nullable) name
MPS_AVAILABLE_STARTING(macos(14.0), ios(17.0), tvos(17.0))
MPS_SWIFT_NAME( conjugate(tensor:name:) );
```
- Rename `isOnMacOS13orNewer(unsigned minor)` hook to `isOnMacOSorNewer(major, minor)`
- Replace `torch._C.__mps_is_on_macos_13_or_newer` with `torch._C._mps_is_on_macos_or_newer`
- Add `torch.backends.mps.is_macos_or_newer` public API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115512
Approved by: https://github.com/albanD
In https://github.com/pytorch/pytorch/pull/115449/ somehow after turning on `DUMP_ON_TIMEOUT=1`, some existing tests failed. Upon checking, the failing is because of TCPStore check call within watchdog thread.
1. It's not because of TCPStore creation has not completed, because if I put it sleep for a long time, the test still failed. Rather, it's because we query TCPStore after we shutdown the PG.
2. The reason for that is: The `std::chrono::steady_clock::now()` function in C++ returns a `time_point` object representing the current point in time according to the steady clock. The default unit of this time_point is not directly specified in terms of seconds or nanoseconds; rather, it is dependent on the internal representation of the steady clock, which can vary between implementations. In reality it's actually nanosecs which makes the delta so big that we are checking the store every time when watchdog thread wakes up. To make things even worse, `terminateProcessGroup_` might be turned to be `True` before the next check for the outmost while but before TCPStore check, so watchdog gets stuck because we are checking a TCPStore which is already deleted. And main thread is still waiting for watchdog to join.
The solution here is:
1. Add back `std::chrono::duration_cast` to ensure the delta is indeed mil_sec, so that the timeout check logic is working as expected.
2. Check `terminateProcessGroup_` as well so that, we don't do any dump when main thread has already mark the process exited.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115475
Approved by: https://github.com/wconstab