This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Unrelated, to bypass CI failures due to the gcc9 dependency update in Ubuntu-18.04:
- Add hack to squash older libstdc++ from conda environment in favor one from OS to `.ci/docker/install_conda.sh`
- Update bazel cuda builds to focal, as with libstdc++-6.0.32 bazel builds loose the ability to catch exceptions (probably because they link with cupti statically, but I could not found where it is done)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
Similar to https://github.com/pytorch/pytorch/pull/96160 but for the modules
nn.PixelShuffle and nn.PixelUnshuffle.
torch.nn.PixelUnshuffle accepts both float and quantized inputs.
However, previously we would unnecessarily dequantize quantized inputs into floats
before passing them to the function. This commit fixes this by lowering the pattern
[dequant - PixelShuffle - quant].
[dequant - PixelUnshuffle - quant].
Test Plan:
python test/test_quantization.py TestQuantizeFxOps.test_pixel_shuffle_module
python test/test_quantization.py TestQuantizeFxOps.test_pixel_unshuffle_module
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101926
Approved by: https://github.com/jerryzh168
Summary:
## Summary
torch.nn.functional.pixel_unshuffle and torch.narrow accepts both float
and quantized inputs. However, previously we would unnecessarily
dequantize quantized inputs into floats before passing them to
the function. This commit fixes this by lowering the pattern
[dequant - pixel_unshuffle - quant].
[dequant - narrow - quant].
Test Plan:
```
python test/test_quantization.py TestQuantizeFxOps.test_pixel_unshuffle
```
```
python test/test_quantization.py TestQuantizeFxOps.test_narrow
```
Differential Revision: D43858199
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96160
Approved by: https://github.com/andrewor14
Summary: `torch.nn.functional.pixel_shuffle` accepts both float
and quantized inputs. However, previously we would unnecessarily
dequantize quantized inputs into floats before passing them to
the function. This commit fixes this by lowering the pattern
[dequant - pixel_shuffle - quant].
Test Plan:
python test/test_quantization.py TestQuantizeFxOps.test_pixel_shuffle
Reviewers: vkuzo
Subscribers: vkuzo, supriyar
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94769
Approved by: https://github.com/vkuzo
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
Summary:
Previously prepare_fx returns an ObservedGraphModule and convert_fx returns a QuantizedGraphModule,
this is to preserve the attributes since torch.fx.GraphModule did not preserve them, after https://github.com/pytorch/pytorch/pull/92062
we are preserving `model.meta`, so we can store the attributes in model.meta now to preserve them.
With this, we don't need to create a new type of GraphModule in these functions and can use GraphModule directly, this
is useful for quantization in pytorch 2.0 flow, if other transformations are using GraphModule as well, the quantization passes will be composable with them
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestQuantizeFxModels
python test/test_quantization.py TestQuantizePT2E
Imported from OSS
Differential Revision: D42979722
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94412
Approved by: https://github.com/vkuzo
Summary:
Adds a compare weights NS API using a single model.
Note: this is not intended for wide usage, so testing is limited
to specific functions our customers care about. The main reason for adding this
is because existing customers of NS are using the old `compare_weights` API,
and we'd like to move everyone to a single-model API style.
Once all the customers are moved over, we can delete all the old NS code.
Test plan:
```
python test/test_quantization.py -k NShadows.test_extract_weights_linear
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92058
Approved by: https://github.com/jerryzh168
Summary:
This PR reimplements the old `add_loggers(name_a, model_a, name_b, model_b)`
API in a single-model API style, similar to PNP. This allows for memory
efficiency savings of not having to load two models.
Test plan:
```
python test/test_quantization.py -k NShadows.test_add_loggers
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91639
Approved by: https://github.com/jerryzh168
Summary:
Before this PR, PNP added shadow loggers to insides of
the shadow wrapper modules.
This PR moves those loggers to the parent module.
There are a couple of benefits:
1. this will unbreak features of quantization API which don't support loggers (such as hardcoding model output to be quantized)
2. this makes it easier to look at the parent graph and visualize what is logged, since now all the logging is in the same graph
3. this will make it easier to implement features such as propagation error calculation in the future
Test plan:
```
python test/test_quantization.py -k NShadows
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91428
Approved by: https://github.com/jerryzh168
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
...
def fuse_conv_bn_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)
def fuse_linear_relu(is_qat, linear, relu):
...
def fuse_conv_bn_relu(is_qat, conv, bn, relu):
...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.
BC-breaking Notes:
Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig
def fuse_linear_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d)
```
After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d)
```
OR (for backward-compatibility)
```
def fuse_linear_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig() \
._set_pattern_complex_format((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d) \
._set_use_legacy_pattern_format(True)
```
Before:
```
backend_config.configs # returns Dict[Pattern, BackendPatternConfig]
```
After:
```
backend_config.configs # returns List[BackendPatternConfig]
```
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig
Reviewers: jerryzh168, vkuzo
Subscribers: jerryzh168, vkuzo
Differential Revision: [D41954553](https://our.internmc.facebook.com/intern/diff/D41954553)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90698
Approved by: https://github.com/vkuzo, https://github.com/jerryzh168
Continuation after https://github.com/pytorch/pytorch/pull/90163.
Here is a script I used to find all the non-existing arguments in the docstrings (the script can give false positives in presence of *args/**kwargs or decorators):
_Edit:_
I've realized that the indentation is wrong for the last `break` in the script, so the script only gives output for a function if the first docstring argument is wrong. I'll create a separate PR if I find more issues with corrected script.
``` python
import ast
import os
import docstring_parser
for root, dirs, files in os.walk('.'):
for name in files:
if root.startswith("./.git/") or root.startswith("./third_party/"):
continue
if name.endswith(".py"):
full_name = os.path.join(root, name)
with open(full_name, "r") as source:
tree = ast.parse(source.read())
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
all_node_args = node.args.args
if node.args.vararg is not None:
all_node_args.append(node.args.vararg)
if node.args.kwarg is not None:
all_node_args.append(node.args.kwarg)
if node.args.posonlyargs is not None:
all_node_args.extend(node.args.posonlyargs)
if node.args.kwonlyargs is not None:
all_node_args.extend(node.args.kwonlyargs)
args = [a.arg for a in all_node_args]
docstring = docstring_parser.parse(ast.get_docstring(node))
doc_args = [a.arg_name for a in docstring.params]
clean_doc_args = []
for a in doc_args:
clean_a = ""
for c in a.split()[0]:
if c.isalnum() or c == '_':
clean_a += c
if clean_a:
clean_doc_args.append(clean_a)
doc_args = clean_doc_args
for a in doc_args:
if a not in args:
print(full_name, node.lineno, args, doc_args)
break
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90505
Approved by: https://github.com/malfet, https://github.com/ZainRizvi
Summary: This commit renames fx/quantization_patterns.py
to fx/quantize_handler.py, and fx/fusion_patterns.py to
fx/fuse_handler.py. This is because these files contain
only QuantizeHandler and FuseHandler respectively, so the
new names are more descriptive. A future commit will
further break BC by removing all the empty *QuantizeHandler
classes.
BC-breaking notes:
The following classes under the
`torch.ao.quantization.fx.quantization_patterns` namespace
are migrated to the `torch.ao.quantization.fx.quantize_handler`
namespace:
```
QuantizeHandler
BinaryOpQuantizeHandler
CatQuantizeHandler
ConvReluQuantizeHandler
LinearReLUQuantizeHandler
BatchNormQuantizeHandler
EmbeddingQuantizeHandler
RNNDynamicQuantizeHandler
DefaultNodeQuantizeHandler
FixedQParamsOpQuantizeHandler
CopyNodeQuantizeHandler
GeneralTensorShapeOpQuantizeHandler
CustomModuleQuantizeHandler
StandaloneModuleQuantizeHandler
```
The following classes under the
`torch.ao.quantization.fx.fusion_patterns` namespace are
migrated to the `torch.ao.quantization.fx.fuse_handler`
namespace:
```
DefaultFuseHandler
FuseHandler
```
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
Reviewers: jerryzh168, vkuzo
Subscribers: jerryzh168, vkuzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89872
Approved by: https://github.com/jerryzh168
Summary: Previously under torch/ao/quantization we have
backend_config/utils.py and fx/backend_config_utils.py, which
was confusing. This commit deletes the latter and moves
everything there to more suitable util files.
BC-breaking note: The following public APIs under the
`torch.ao.quantization.fx.backend_config_utils` namespace
are removed in this commit.
```
get_quantize_handler_cls
get_fusion_pattern_to_fuse_handler_cls
get_native_quant_patterns
get_pattern_to_quantize_handlers
```
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
Reviewers: jerryzh168, vkuzo
Subscribers: jerryzh168, vkuzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89810
Approved by: https://github.com/jerryzh168
Summary: same function in observer and quantize, consolidated to a
single function. Note the definitions were slightly different, I've
changed the definition to be maximally inclusive so that the name of the
function is more accurate
Test Plan: python test/test_public_bindings.py
python test/test_quantization.py
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D40709276](https://our.internmc.facebook.com/intern/diff/D40709276)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87520
Approved by: https://github.com/jcaip
Summary: Added QConfigMultiMapping which is essentially a
List[QConfigMapping] with set methods and dedicated handling to
avoid unwanted matches and improve UX.
note: the from __future__ import annotations line caused weird errors when the
QConfigMultiMapping class was put in _numeric_suite_fx.py so it was moved.
Test Plan: python test/test_quantization.py TestFxNumericSuiteNShadows
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86922
Approved by: https://github.com/vkuzo
Summary:
att, with the introduction of QConfigMapping, this name is now very confusing, so renamed
it to something clearer
Test Plan:
python test/test_quantization.py TestQuantizeFx
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86861
Approved by: https://github.com/vkuzo
Summary:
This PR is an early prototype of a tool to quantize each layer of a model
N times, with N qconfigs each. We follow the design agreed upon in
https://fburl.com/gdoc/e1gaq3ih .
Current API:
```
m = M().eval()
example_input = (torch.randn(2, 2),)
qconfig_mappings = [
QConfigMapping().set_global(torch.quantization.default_qconfig),
QConfigMapping().set_global(torch.quantization.default_dynamic_qconfig),
]
backend_config = get_native_backend_config()
msp = prepare_n_shadows_model(
m, example_input, qconfig_mappings, backend_config)
for _ in range(2):
msp(*example_input)
msq = convert_n_shadows_model(msp)
msq(*example_input)
results = extract_results_n_shadows_model(msq)
print_comparisons_n_shadows_model(results)
// example output
subgraph_idx ref_node_name best_idx 1 2
-------------- --------------- ---------- ------- -------
subgraph_0 fc1 2 42.0834 42.6279
subgraph_1 fc2 2 43.7259 50.0593
```
Test plan:
```
python test/test_quantization.py -k test_n_shadows
```
Differential Revision: [D37650332](https://our.internmc.facebook.com/intern/diff/D37650332)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80521
Approved by: https://github.com/jerryzh168, https://github.com/andrewor14
Summary:
- Finishes the second part of https://github.com/pytorch/pytorch/pull/83263
- Removes WEIGHT_INDEX_DICT and BIAS_INDEX_DICT from utils.py
- Moves two funcitons, `node_arg_is_weight` and `node_arg_is_bias` into utils.py from prepare.py
convert.py and _equalize.py now use node_arg_is_weight instead of the dictionaries
- Adds in quantization support for `F.groupnorm`.
Add in missing BackendPatternConfigs for layernorm, instancenorm, and groupnorm
Test Plan:
```
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
```
Reviewers:
Subscribers:
Tasks:
Tags:
ghstack-source-id: 2b157e0dc4f1553be1f4813b4693db952e6fc558
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83848Fixes#83093
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83853
Approved by: https://github.com/jerryzh168, https://github.com/andrewor14
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
- [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168