Commit Graph

259 Commits

Author SHA1 Message Date
Oleg Khabinov
c3bc65d9d8 [dynamo] Restore constant tensor original FQNs (#116086)
Differential Revision: D52192693

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116086
Approved by: https://github.com/angelayi, https://github.com/muchulee8
2023-12-20 02:10:02 +00:00
PyTorch MergeBot
5b6b680517 Revert "Adamw refactor (#115983)"
This reverts commit eafeba71c1.

Reverted https://github.com/pytorch/pytorch/pull/115983 on behalf of https://github.com/jeanschmidt due to Breaking internal tests, @janeyx99 please help @tfsingh to have this PR landed ([comment](https://github.com/pytorch/pytorch/pull/115983#issuecomment-1862976954))
2023-12-19 15:26:44 +00:00
Tej Singh
eafeba71c1 Adamw refactor (#115983)
Fixes #104899, refactors adamw by abstracting out common code in adam.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115983
Approved by: https://github.com/janeyx99
2023-12-17 06:58:39 +00:00
David Berard
5c0976fa04 Revert "[dynamo] guarded config (#111299)" (#115386)
This reverts commit 5927e9cbf2.

Differential Revision: [D51959266](https://our.internmc.facebook.com/intern/diff/D51959266)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115386
Approved by: https://github.com/yanboliang, https://github.com/malfet
ghstack dependencies: #115384, #115401, #115385
2023-12-11 19:35:42 +00:00
Adrian Wälchli
38f890341d Implement pass-through state_dict and load_state_dict for dynamo OptimizedModule (#113423)
Fixes #113422
Fixes #94575

This is now possible:
```py
model = Model()
compiled_model = torch.compile(model)

model.load_state_dict(compiled_model.state_dict())  # previously key mismatch!
```

This also makes it much easier to checkpoint and load models that were wrapped like so:
```py
FSDP(torch.compile(model))
# or
DDP(torch.compile(model))
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113423
Approved by: https://github.com/msaroufim
2023-12-10 22:09:19 +00:00
David Berard
b4ef59f740 Revert "[dynamo] remove unused OptimizeCtx field - export (#113901)" (#115401)
This reverts commit b62230a685.

Differential Revision: [D52001024](https://our.internmc.facebook.com/intern/diff/D52001024)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115401
Approved by: https://github.com/malfet
ghstack dependencies: #115384
2023-12-10 18:17:24 +00:00
David Berard
b36fc6790e Revert "[dynamo] Guard on HAS_GRAPH_BREAKS if graph breaks are present (i.e. cache miss if compiled object requires nopython) (#114073)" (#115384)
This reverts commit 0bb29f9450.

Differential Revision: [D51959267](https://our.internmc.facebook.com/intern/diff/D51959267)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115384
Approved by: https://github.com/malfet
2023-12-10 18:16:02 +00:00
ydwu4
240f4b2d25 make __lookup_backend return None when cache misses (#114766)
Fixes #114674. The error is because cached_backends is a thread-local object, when it's accessed from the other thread, we'll have a cache miss. The naive fix is to just return None and re-compiles when cache misses. This could also be related to making dynamo more thread-safe but I'm not sure if there an on-going effort or not.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114766
Approved by: https://github.com/IvanYashchuk, https://github.com/Neilblaze, https://github.com/jansel
2023-12-07 00:25:01 +00:00
angelayi
00412e6dfa [export] Add meta to params (#114622)
The graph from `capture_pre_autograd_graph` doesn't have `meta["val"]` on the param nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114622
Approved by: https://github.com/frank-wei, https://github.com/zhxchen17, https://github.com/khabinov
2023-11-28 07:40:15 +00:00
voznesenskym
081c5b3adc Add Stateful/Stateless symbolic contexts, use fresh fake mode for dynamo backends (#113926) (#114526)
Summary:

The primary problem we are setting out to solve here is fake tensor freshness. Before this PR, fake tensors after dynamo represented fake tensors *at the end* of trace, so subsequent retraces like aot_autograd would start off with fake tensors in the wrong (end result) state, rather than their expected fresh state. The solution here is to start a fresh fake mode, and re-fakify the tensors. The nuance comes from ensuring that symbols are uniformly created for the symbolic sizes and strides of the tensor.

This PR is the result of *a lot* of back and forth with ezyang and eellison. Initially, the first pass at this was not super different from what we have in the PR - the broad strokes were the same:

1) We cache source->symbol in shape_env
2) We pass policy objects around, stored at dynamo fakificaiton time, and reused for later fakification
3) We create a new fake mode for backends
(from https://github.com/pytorch/pytorch/pull/113605/files)

This is ugly, and has some layering violations. We detoured our decision making through a few other alternatives. Immutable/mutable fake tensor mode was the most interesting alternative, https://github.com/pytorch/pytorch/pull/113653, and was struck down on concerns of complexity in fake mode combined with it not covering all edge cases. We also detoured on what to do about tensor memoization returning back potentially different tensors than requested, and if that was an anti pattern (it is) we want to hack in with the symbol cache (we don't).

We went back to the drawing board here, but with a few concessions:
1) the cache for source->symbol must live outside of shape_env, for both lifecycle, and layering reasons
2) A good amount of work needs to be done to pipe policy around fake_mode and meta_utils correctly, to cover all the cases (ezyang did this)

cc penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 aakhundov kadeng

imported-using-ghimport

Test Plan: Imported from OSS

Reviewed By: huydhn, Chillee

Differential Revision: D51566250

Pulled By: voznesenskym

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114526
Approved by: https://github.com/Chillee, https://github.com/huydhn
2023-11-26 23:40:32 +00:00
PyTorch MergeBot
2f3beb715c Revert "Add Stateful/Stateless symbolic contexts, use fresh fake mode for dynamo backends (#113926)"
This reverts commit 2ca1119d53.

Reverted https://github.com/pytorch/pytorch/pull/113926 on behalf of https://github.com/DanilBaibak due to Break internal build ([comment](https://github.com/pytorch/pytorch/pull/113926#issuecomment-1822713852))
2023-11-22 12:52:33 +00:00
voznesenskym
2ca1119d53 Add Stateful/Stateless symbolic contexts, use fresh fake mode for dynamo backends (#113926)
The primary problem we are setting out to solve here is fake tensor freshness. Before this PR, fake tensors after dynamo represented fake tensors *at the end* of trace, so subsequent retraces like aot_autograd would start off with fake tensors in the wrong (end result) state, rather than their expected fresh state. The solution here is to start a fresh fake mode, and re-fakify the tensors. The nuance comes from ensuring that symbols are uniformly created for the symbolic sizes and strides of the tensor.

This PR is the result of *a lot* of back and forth with @ezyang and @eellison. Initially, the first pass at this was not super different from what we have in the PR - the broad strokes were the same:

1) We cache source->symbol in shape_env
2) We pass policy objects around, stored at dynamo fakificaiton time, and reused for later fakification
3) We create a new fake mode for backends
(from https://github.com/pytorch/pytorch/pull/113605/files)

This is ugly, and has some layering violations. We detoured our decision making through a few other alternatives. Immutable/mutable fake tensor mode was the most interesting alternative, https://github.com/pytorch/pytorch/pull/113653, and was struck down on concerns of complexity in fake mode combined with it not covering all edge cases. We also detoured on what to do about tensor memoization returning back potentially different tensors than requested, and if that was an anti pattern (it is) we want to hack in with the symbol cache (we don't).

We went back to the drawing board here, but with a few concessions:
1) the cache for source->symbol must live outside of shape_env, for both lifecycle, and layering reasons
2) A good amount of work needs to be done to pipe policy around fake_mode and meta_utils correctly, to cover all the cases (@ezyang did this)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113926
Approved by: https://github.com/ezyang, https://github.com/eellison
2023-11-20 23:06:37 +00:00
Adnan Akhundov
4b07fca7d7 [export] Allow shifted constraint ranges in dynamo._export (#114024)
Summary: Previously, when we had two dynamic shape symbols `s0` and `s1` bound by the relationship `s1 == s0 + 1`, even when the range constraints were set in accordance with the relationship (e.g., to `[2, 1024]` for `s0` and to `[3, 1025]` for `s1`), `torch._dynamo.export` raised an error saying that the constraint is violated. Here we add a range check between the expression and the constraint and, if the ranges match, don't declare the constraint violated.

We also add a flag to disable the dim constraint solver in `torch._dynamo.export` (not set by default for BC), passed down from the `torch._export.aot_compile`. This is because, even for simple constraints like `s1 == s0 + 1`, the solver claims that the constraint is too complex and the dimension `s0` must be specialized. The new flag is not exposed as a part of the public API (i.e., the one without `_`s in the module names).

Both changes are required to unblock PT2 compilation of an internal model with AOT Inductor.

Test Plan:

```
$ python test/inductor/test_aot_inductor.py -k test_shifted_constraint_ranges
s...
----------------------------------------------------------------------
Ran 4 tests in 53.247s

OK (skipped=1)
```

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114024
Approved by: https://github.com/zhxchen17
2023-11-20 22:49:14 +00:00
Jon Chuang
0bb29f9450 [dynamo] Guard on HAS_GRAPH_BREAKS if graph breaks are present (i.e. cache miss if compiled object requires nopython) (#114073)
Fixes https://github.com/pytorch/pytorch/issues/114059

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114073
Approved by: https://github.com/ezyang
2023-11-20 19:32:03 +00:00
Angela Yi
72a8329ec9 [reland][aotinductor] Add example_value metadata to nodes (#113986)
Test Plan:
`TORCH_LOGS=dynamo,inductor,aot  CUDA_VISIBLE_DEVICES=7 TORCH_COMPILE_DEBUG=0 TORCHINDUCTOR_MAX_AUTOTUNE=1 buck2 run mode/opt-split-dwarf mode/inplace -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010  caffe2/torch/fb/model_transform/experimental/benchmark:mts_gpu_benchmark -- --local-model /tmp/409501788/66/gpu_lowering/input.predictor.disagg.gpu.merge --lower-backend="AOT_INDUCTOR"`

Without passes:
`BS: 2048, MFLOPS/BS: 40.51, TFLOP/s: 37.32, Time per iter: 2.22ms, Threads: 1, QPS: 921146.83, Accuracy: True (rtol=0.01), AOT_INDUCTOR lowering duration: 66.15s`

With passes:
`BS: 2048, MFLOPS/BS: 40.51, TFLOP/s: 37.49, Time per iter: 2.21ms, Threads: 1, QPS: 925450.82, Accuracy: True (rtol=0.01), AOT_INDUCTOR lowering duration: 261.11s`

Differential Revision: D51436878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113986
Approved by: https://github.com/zhxchen17
2023-11-19 07:12:24 +00:00
Jez Ng
4667e20b3f Delete a bunch of type-ignores (#113990)
* Replaced `ignore[import]` by mypy config file entries
* Removed a bunch of ignores around previously-fixed attr-defined /
  call-arg issues
* Fixed some invalid / undefined types; added a few more type-ignores to
  squelch the downstream errors this exposed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113990
Approved by: https://github.com/eellison, https://github.com/Skylion007
ghstack dependencies: #113979
2023-11-18 02:48:38 +00:00
Jez Ng
0c8362de1a [dynamo] Make {guards,eval_frame}.py pass follow_imports typechecking (#113721)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113721
Approved by: https://github.com/Skylion007
ghstack dependencies: #113722
2023-11-17 18:24:21 +00:00
Edward Z. Yang
e2b114ab9f [BE] Package dynamic_dims/constraint_dims into CreateSymbolicPolicy (#113802)
This will make it more convenient to propagate more information through
all of these functions in the future (e.g., for storage offset
information.)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113802
Approved by: https://github.com/davidberard98, https://github.com/voznesenskym
2023-11-17 18:22:46 +00:00
Jon Chuang
a5e4d4f25f [dynamo] promote skipfiles logging to verbose (#113916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113916
Approved by: https://github.com/ezyang
ghstack dependencies: #111299, #111300, #113901
2023-11-17 10:00:44 +00:00
Jon Chuang
b62230a685 [dynamo] remove unused OptimizeCtx field - export (#113901)
This is only an internal API, so it's not really a BC breaking concern

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113901
Approved by: https://github.com/ezyang
ghstack dependencies: #111299, #111300
2023-11-17 10:00:44 +00:00
Jon Chuang
5927e9cbf2 [dynamo] guarded config (#111299)
---

Fixes: https://github.com/pytorch/pytorch/issues/110682

Replaces: https://github.com/pytorch/pytorch/pull/111074

The guards are installed based on config that is valid at the call to `torch.compile`, rather than at any subsequent call / triggered compilation. Subsequent compilations will restore the config if there is a config mismatch of the existing global config with the saved config.

TODO:
- [X] add tests

Follow up PRs:
- [x] add revised cache size computation (follow up PR: #111300 , based on: https://github.com/pytorch/pytorch/pull/107496)
- [ ] handle run-only mode?
- [ ] config restoration itself is not thread-safe (tracked: https://github.com/pytorch/pytorch/issues/111150)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111299
Approved by: https://github.com/ezyang
2023-11-17 09:59:58 +00:00
Zhengxu Chen
8943207925 [dynamo] Support kwargs for lazy module call. (#113387)
Summary: Seems like we already support kwargs in _infer_argument, so we don't need the extra assertion here.

Test Plan: buck test caffe2/test:test_export -- -r lazy_module_kwargs

Differential Revision: D51170339

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113387
Approved by: https://github.com/yanboliang
2023-11-10 05:17:58 +00:00
William Wen
ad1c3467e2 [dynamo] run guard fail hooks for each cache entry for which there is a cache miss (#110325)
Attempt number 2 at https://github.com/pytorch/pytorch/issues/108950.

Improves debugging for guard failures/recompilations by:
- only running guard fail reason generation during recompilation, instead of when a guard fails during dynamo cache lookup (so generating guard failure reasons is not on the critical path)
- ~~always reporting all guard failures~~ Reports the first-failing guard failure for each cache entry.

We don't expect a performance hit since the guard fail reasons are only generated at recompile time rather than runtime. Perf benchmark to check this (https://hud.pytorch.org/benchmark/torchbench/inductor_with_cudagraphs?startTime=Fri,%2027%20Oct%202023%2017:42:43%20GMT&stopTime=Fri,%2003%20Nov%202023%2017:42:43%20GMT&granularity=hour&mode=training&dtype=amp&lBranch=gh/williamwen42/62/head&lCommit=f4724f5ffc6d17ceae513a42fc18627be7b85482&rBranch=main&rCommit=29f3d392bf230072e3bffae37b078e770cae1956). We may also need to verify this on benchmarks where guard fails are common.

Sample script:
```python
import torch
def generate_data(b):
    return (
        torch.randn(b, 3, 32, 32).to(torch.float32).cuda(),
        torch.randint(1000, (b,)).cuda(),
    )

from torchvision.models import resnet18
def init_model():
    return resnet18().to(torch.float32).cuda()

model = init_model()
model_opt = torch.compile(model, dynamic=False)

for b in range(16, 32):
    data = generate_data(b)
    model_opt(data[0])
```

Sample logs:
```bash
(/data/users/williamwen/py310-env) [williamwen@devgpu020.odn1 /data/users/williamwen/pytorch (wwen/log-all-guards)]$ python playground5.py
/data/users/williamwen/pytorch/torch/_inductor/compile_fx.py:141: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance.
  warnings.warn(
[2023-11-06 14:50:47,605] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (8)
[2023-11-06 14:50:47,605] torch._dynamo.convert_frame: [WARNING]    function: 'forward' (/data/users/williamwen/torchvision/torchvision/models/resnet.py:284)
[2023-11-06 14:50:47,605] torch._dynamo.convert_frame: [WARNING]    last reason: tensor 'L['x']' size mismatch at index 0. expected 16, actual 24
[2023-11-06 14:50:47,605] torch._dynamo.convert_frame: [WARNING] To log all recompilation reasons, use TORCH_LOGS="recompiles".
[2023-11-06 14:50:47,605] torch._dynamo.convert_frame: [WARNING] To diagnose recompilation issues, see https://pytorch.org/docs/master/compile/troubleshooting.html.
(/data/users/williamwen/py310-env) [williamwen@devgpu020.odn1 /data/users/williamwen/pytorch (wwen/log-all-guards)]$ TORCH_LOGS="recompiles" python playground5.py
/data/users/williamwen/pytorch/torch/_inductor/compile_fx.py:141: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance.
  warnings.warn(
[2023-11-06 14:53:31,591] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:53:31,591] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:53:31,591] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 17
[2023-11-06 14:53:41,333] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:53:41,333] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:53:41,333] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 18
[2023-11-06 14:53:41,333] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 18
[2023-11-06 14:53:50,463] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:53:50,463] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:53:50,463] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 19
[2023-11-06 14:53:50,463] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 19
[2023-11-06 14:53:50,463] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 19
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 19, actual 20
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 20
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 20
[2023-11-06 14:53:59,848] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 20
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 20, actual 21
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 19, actual 21
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 21
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 21
[2023-11-06 14:54:08,549] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 21
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 21, actual 22
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 20, actual 22
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 19, actual 22
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 22
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 22
[2023-11-06 14:54:17,795] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 22
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 22, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 21, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 20, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 19, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 23
[2023-11-06 14:54:27,430] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 23
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function forward in /data/users/williamwen/torchvision/torchvision/models/resnet.py:284
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 23, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 22, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 21, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 20, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 19, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 18, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 17, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 16, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (8)
[2023-11-06 14:54:36,744] torch._dynamo.convert_frame: [WARNING]    function: 'forward' (/data/users/williamwen/torchvision/torchvision/models/resnet.py:284)
[2023-11-06 14:54:36,744] torch._dynamo.convert_frame: [WARNING]    last reason: tensor 'L['x']' size mismatch at index 0. expected 16, actual 24
[2023-11-06 14:54:36,744] torch._dynamo.convert_frame: [WARNING] To log all recompilation reasons, use TORCH_LOGS="recompiles".
[2023-11-06 14:54:36,744] torch._dynamo.convert_frame: [WARNING] To diagnose recompilation issues, see https://pytorch.org/docs/master/compile/troubleshooting.html.
[2023-11-06 14:54:45,922] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:54:45,922] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:45,922] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 25
[2023-11-06 14:54:54,691] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:54:54,691] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:54:54,691] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 26
[2023-11-06 14:54:54,691] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 26
[2023-11-06 14:55:03,591] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:55:03,591] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:55:03,591] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 26, actual 27
[2023-11-06 14:55:03,591] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 27
[2023-11-06 14:55:03,591] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 27
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 27, actual 28
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 26, actual 28
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 28
[2023-11-06 14:55:12,384] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 28
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 28, actual 29
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 27, actual 29
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 26, actual 29
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 29
[2023-11-06 14:55:21,442] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 29
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 29, actual 30
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 28, actual 30
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 27, actual 30
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 26, actual 30
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 30
[2023-11-06 14:55:30,315] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 30
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG] Recompiling function _forward_impl in /data/users/williamwen/torchvision/torchvision/models/resnet.py:266
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     triggered by the following guard failure(s):
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 30, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 29, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 28, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 27, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 26, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 25, actual 31
[2023-11-06 14:55:39,839] torch._dynamo.guards.__recompiles: [DEBUG]     - tensor 'L['x']' size mismatch at index 0. expected 24, actual 31
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110325
Approved by: https://github.com/ezyang, https://github.com/jon-chuang
2023-11-07 20:10:59 +00:00
Jon Chuang
247b5bdbb5 [dynamo (easy)] Add skip reason to debug logs (#112869)
Fixes https://github.com/pytorch/pytorch/issues/112867

Example logs
```
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: helper (reason: in skipfiles, file: /usr/lib/python3.10/contextlib.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: __init__ (reason: in skipfiles, file: /usr/lib/python3.10/contextlib.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: __enter__ (reason: in skipfiles, file: /usr/lib/python3.10/contextlib.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: backend_cache_wrapper (reason: in skipfiles, file: /home/jonch/Desktop/Programming/mlsys/pytorch/torch/_dynamo/eval_frame.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: _maybe_init_guarded_backend_cache (reason: in skipfiles, file: /home/jonch/Desktop/Programming/mlsys/pytorch/torch/_dynamo/eval_frame.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: innermost_fn (reason: in skipfiles, file: /home/jonch/Desktop/Programming/mlsys/pytorch/torch/_dynamo/eval_frame.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: _set_current_backend (reason: in skipfiles, file: /home/jonch/Desktop/Programming/mlsys/pytorch/torch/_dynamo/eval_frame.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: __init__ (reason: in skipfiles, file: /usr/lib/python3.10/contextlib.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: __enter__ (reason: in skipfiles, file: /usr/lib/python3.10/contextlib.py)
[2023-11-03 12:51:02,230] torch._dynamo.eval_frame: [DEBUG] skipping: enable_dynamic (reason: in skipfiles, file: /home/jonch/Desktop/Programming/mlsys/pytorch/torch/_dynamo/eval_frame.py)
[2023-11-03 12:51:02,247] [0/0] torch._dynamo.symbolic_convert: [INFO] Step 1: torchdynamo start tracing fn /home/jonch/Desktop/sdpa.py:1635
[2023-11-03 12:51:02,248] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line /home/jonch/Desktop/sdpa.py:1635 in fn (fn)
[2023-11-03 12:51:02,248] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]     def fn(x):
[2023-11-03 12:51:02,313] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input L_x_ L['x']
[2023-11-03 12:51:02,314] [0/0] torch._dynamo.variables.builder: [DEBUG] wrap_to_fake L['x'] (3,) [<DimDynamic.STATIC: 2>] [None]
[2023-11-03 12:51:02,314] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line /home/jonch/Desktop/sdpa.py:1636 in fn (fn)
[2023-11-03 12:51:02,314] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]         x = x + 1
[2023-11-03 12:51:02,314] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x []

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112869
Approved by: https://github.com/jansel
2023-11-04 18:08:42 +00:00
PyTorch MergeBot
5f461e9ec1 Revert "Error early when dataclass is not registered (#112211)"
This reverts commit b165abaa3b.

Reverted https://github.com/pytorch/pytorch/pull/112211 on behalf of https://github.com/ZainRizvi due to Breaks internal builds. See D50820325 ([comment](https://github.com/pytorch/pytorch/pull/112211#issuecomment-1787794078))
2023-10-31 18:45:25 +00:00
Tugsbayasgalan Manlaibaatar
b165abaa3b Error early when dataclass is not registered (#112211)
Partially fixes: https://github.com/pytorch/pytorch/issues/112043

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112211
Approved by: https://github.com/angelayi
2023-10-28 19:36:02 +00:00
ydwu4
036abd43b3 [dynamo] Preserve node names in export (#111947)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111947
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2023-10-26 16:11:35 +00:00
Aaron Gokaslan
cb856b08b2 [BE]: Attach cause to some exceptions and enable RUFF TRY200 (#111496)
Did some easy fixes from enabling TRY200. Most of these seem like oversights instead of intentional. The proper way to silence intentional errors is with `from None` to note that you thought about whether it should contain the cause and decided against it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111496
Approved by: https://github.com/malfet
2023-10-19 21:56:36 +00:00
Edward Z. Yang
126d422cf0 Error if you try to run Dynamo compiled function under torch.jit.trace (#111321)
Fixes https://github.com/pytorch/pytorch/issues/111319

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111321
Approved by: https://github.com/Chillee
2023-10-16 13:52:29 +00:00
Yanbo Liang
986ad3bfa6 [2/N] Dynamo supports skip by function & removes skipfiles circular import (#110835)
Several improvements for skipfiles:
* Add ```FUNC_INLINELIST``` to support function level skip/inline check.
  * Use ```fn.__code__``` to match function since we can't get the function object sometimes.
* Use python module string name for ```FILE_INLINELIST``` and ```SUBMODULE_INLINELIST```.
  * Use filename to match file and python module, which can fundamentally resolved the circular import issues introduced by skipfiles.
  * Use ```TYPE_CHECKING``` to ensure the python module string name is correct.
* Add unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110835
Approved by: https://github.com/ezyang
2023-10-12 00:44:41 +00:00
PyTorch MergeBot
d3205f8377 Revert "[2/N] Dynamo supports skip by function & removes skipfiles circular import (#110835)"
This reverts commit 0bd4ce728b.

Reverted https://github.com/pytorch/pytorch/pull/110835 on behalf of https://github.com/DanilBaibak due to Broken trunk ([comment](https://github.com/pytorch/pytorch/pull/110835#issuecomment-1758279590))
2023-10-11 18:39:36 +00:00
Yanbo Liang
0bd4ce728b [2/N] Dynamo supports skip by function & removes skipfiles circular import (#110835)
Several improvements for skipfiles:
* Add ```FUNC_INLINELIST``` to support function level skip/inline check.
  * Use ```fn.__code__``` to match function since we can't get the function object sometimes.
* Use python module string name for ```FILE_INLINELIST``` and ```SUBMODULE_INLINELIST```.
  * Use filename to match file and python module, which can fundamentally resolved the circular import issues introduced by skipfiles.
  * Use ```TYPE_CHECKING``` to ensure the python module string name is correct.
* Add unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110835
Approved by: https://github.com/ezyang
2023-10-11 17:24:56 +00:00
PyTorch MergeBot
33403336fa Revert "[user errors] compulsory case names, allow multiple (#110878)"
This reverts commit 2ae71c4598.

Reverted https://github.com/pytorch/pytorch/pull/110878 on behalf of https://github.com/kit1980 due to export/test_export.py::TestExport::test_multiple_definitions_same_name_dim - TypeError: UserError.init() missing 1 required positional argument: 'case_names' ([comment](https://github.com/pytorch/pytorch/pull/110878#issuecomment-1754360051))
2023-10-10 04:44:40 +00:00
Avik Chaudhuri
2ae71c4598 [user errors] compulsory case names, allow multiple (#110878)
We want to get to a point where most UserErrors link to exportdb examples. This PR makes passing case names non-optional to make this intent clearer and encourage developers who raise UserErrors to make or point to examples that make fixing such errors more obvious for users.

In addition, sometimes there are multiple examples that are relevant to an error. Thus this PR also enables passing multiple case names.

Retry of #110733 which was reverted due to a landrace.

Differential Revision: [D50087148](https://our.internmc.facebook.com/intern/diff/D50087148/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110878
Approved by: https://github.com/gmagogsfm, https://github.com/tugsbayasgalan
2023-10-10 03:48:07 +00:00
Huy Do
18f0d3af72 Revert "[user errors] compulsory case names, allow multiple (#110733)" (#110783)
This reverts commit 983f6f36db.  I have no idea how to revert https://github.com/pytorch/pytorch/pull/110733 with the bot.  So reverting it manually for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110783
Approved by: https://github.com/ZainRizvi, https://github.com/kit1980
2023-10-07 07:32:39 +00:00
Avik Chaudhuri
983f6f36db [user errors] compulsory case names, allow multiple (#110733)
We want to get to a point where most `UserError`s link to `exportdb` examples. This PR makes passing case names non-optional to make this intent clearer and encourage developers who raise `UserError`s to make or point to examples that make fixing such errors more obvious for users.

In addition, sometimes there are multiple examples that are relevant to an error. Thus this PR also enables passing multiple case names.

Differential Revision: [D50020465](https://our.internmc.facebook.com/intern/diff/D50020465/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110733
Approved by: https://github.com/zhxchen17
2023-10-07 01:25:12 +00:00
Avik Chaudhuri
416eca9736 export db links for user errors (#110555)
Ideally all `_dynamo.exc.UserError`s should have "case names", i.e., link to examples in `exportdb`.

This PR adds case names to several instances of `_dynamo.exc.UserError`. In particular, looking at coverage based on `UserErrorType`:
* `DYNAMIC_CONTROL_FLOW`, `ANTI_PATTERN`, and `STANDARD_LIBRARY` are fully covered.
* `CONSTRAINT_VIOLATION` and `DYNAMIC_DIM` have no coverage. We don't seem to have any dedicated examples of specifying dynamic shapes in `exportdb` (although they are used in some other examples without explanation, to avoid some specialization that would make such examples moot).
* `INVALID_INPUT` is only partly covered. Frankly this is tedious to cover via examples.

Differential Revision: [D49928518](https://our.internmc.facebook.com/intern/diff/D49928518/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110555
Approved by: https://github.com/angelayi, https://github.com/ydwu4
2023-10-05 05:03:04 +00:00
Avik Chaudhuri
6fc09aee36 constant output errors (#110472)
When mapping between the original signature of a program and the graph-captured signature of its exported program, we emit errors when we see unexpected original or graph-captured inputs or outputs.

These errors can arise because of various reasons, e.g.:
1. some input or output has been lifted because of mutation
2. some type is not pytree-registered for flattening / unflattening
3. some type cannot be realized with graph operations

(This is probably not an exhaustive list.)

Previously we used to emit errors based on a vanilla id-based membership check between the two sides, mostly anticipating (1) as the reason for errors. But this does not do justice to errors because of (2) or (3).

This PR emits a different error when it finds (3) to be a probable cause. Specifically, it considers only Tensor and Sym* types to be "supported": no other type seems to be realizable by graph operations.

When (2) is a probable cause, we sometimes also hit the same error because we would expect the supported types to show through upon registration. But this kind of error may need some more work in the future.

Differential Revision: [D49885828](https://our.internmc.facebook.com/intern/diff/D49885828/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110472
Approved by: https://github.com/ydwu4
2023-10-04 21:56:20 +00:00
Kazuaki Ishizaki
2c1b009e39 Fix typo under torch/_dynamo directory (#110459)
This PR fixes typo of comments in files under `torch/_dynamo` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110459
Approved by: https://github.com/colesbury
2023-10-04 16:05:05 +00:00
Kaichao You
34ded74399 [Dynamo] fix signature in dynamo types (#110081)
The type signature is obsolete. This PR fixes the type signature, leaves comments in the C code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110081
Approved by: https://github.com/jansel
2023-09-27 09:30:04 +00:00
Avik Chaudhuri
ebc7039bcb New export API with dynamic shape specifications instead of constraints (#108448)
Our experience using `constraints` / `dynamic_dim` with the existing export API has found it to be (subjectively) clunky and (objectively) verbose in common cases.

This PR implements a new design for the export API that replaces the use of `constraints` / `dynamic_dim` with a new way of specifying dynamic shapes, involving the following concepts:
* a constructor `Dim` for first-class named dynamic dimensions with ranges (similar to `functorch.dim`, and analogous to internal symbolic sizes)
* a mechanism that uses the above in `export` calls to associate inputs to their dynamic shape specifications (`dynamic_shapes`)

Design doc: https://docs.google.com/presentation/d/168U7XK72C_WSsZpGESP6Cho9udh193fi0gfjxCNcJ4E/edit#slide=id.p (Meta-only). Note that we only implement Option 1 in that doc. An older version of this PR also implemented Option 3, which is an alternative way of specifying dynamic shapes using tensor type annotations on the exported callable; but we have moved that to future work for now.

See docs for these new features in `torch.export`. The existing `torch.export.export` is modified to use the new API, `torch._export.export__RC__`, whenever `constraints=None`. We have not deprecated the existing API yet, but will do in a follow-up.

Constraint violation errors arising through use of the new API will now contain suggested fixes using the new API. No longer do we need to report all specializations for static dimensions and suggest all constraints over dynamic dimensions to fix such errors. Instead, due to the redesign, the suggested fixes are much more concise, only involving modifying the definitions of relevant `Dim`s.

Differential Revision: [D48919204](https://our.internmc.facebook.com/intern/diff/D48919204/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108448
Approved by: https://github.com/suo, https://github.com/gmagogsfm
2023-09-22 06:58:26 +00:00
Edward Z. Yang
518308a740 Trace through pytree API with dynamo. (#108533)
Fix: #107315

This PR enables dynamo to trace through the `pytree` API by inlining its functions. In
order to do so, a few details of `pytree` had to be changed.

In summary, this PR:

- Introduces `TreeSpecVariable` for representing `TreeSpec` instances
- Specializes `<type>.__bases__` call, returning a `TupleVariable`
- Enables the call to `id` builtin function for every variable that implements
  `as_python_constant` method
- Specializes `ConstantVariable.call_method` for its (un)flatten functions
- Implements `UserDefinedObjectVariable.as_python_constant`
- Modifies `pytree` by:
    - Make `SUPPORTED_NODES` a map of ids (instead of types) to `NodeDef`
    - Removed `functools.wraps` function, since it can't be inlined

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108533
Approved by: https://github.com/ezyang, https://github.com/voznesenskym
ghstack dependencies: #109201
2023-09-20 00:04:56 +00:00
Michael Lazos
b1d2028eb0 Add compiled optimizer test for nadam (#109548)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109548
Approved by: https://github.com/janeyx99
2023-09-19 22:54:36 +00:00
William Wen
b904432e82 [dynamo] preserve some FX node metadata of GraphModules (#107067)
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.

This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.

The added unit test demonstrates the added functionality of this PR.

~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~

~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~

Differential Revision: [D49257108](https://our.internmc.facebook.com/intern/diff/D49257108)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
2023-09-15 23:29:14 +00:00
ydwu4
94a54b89aa [dynamo] Add BACKEND_MATCH guard to detect and recompile when backend changes (#107337)
**Motivation:**
We try to make torch.cond use torch.compile automatically so that we could error out when there is side-effects in the branches and correctly handle the closures.

Before this PR, we have a warning if we don't turn on a config raise_on_backend_change (turning it on gives us an error) for the following code:
```python
def foo()

# Inside torch.cond, we'd like to do something like
torch.compile(foo, backend="eager", fullgraph=True)(...)
...
# Users may then call torch.compile somewhere else.
# Dynamo will use the cached code of foo for "eager" backend
# but we expect dynamo to recompile with "inductor" backend.
torch.compile(foo, backend="inductor")(...)
```

This PR adds a BACKEND_MATCH guard. Effectively, it implements a per-backend cache. In the above example, the cached code for "eager" won't work for "inductor" due to guard check failures and the second torch.compile will do a re-compilation. In the future, it might be useful to have something like a configuration guard that guards against dynamo configuration changes across different compiles (e.g. compile a function with fullgraph=False then compile it again with fullgraph=True).

**Implementation:**
1. We add a guarded_backend_cache and check the most_recent_backend against the backend associated with cached code. We also remove the raise_on_backend_change flag.

Note: More lines are printed for debug log due to newly added context manager and guard adds .

**Test Plan:**
Removed original tests that raise on different backend and add a new test to test whether the BACKEND_MATCH guard can guard against backend change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107337
Approved by: https://github.com/jansel
2023-09-14 15:49:30 +00:00
zhxchen17
f4e96df60a [export] Preserve shape dynamism for unused inputs. (#109239)
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109239
Approved by: https://github.com/ydwu4
2023-09-14 07:43:36 +00:00
PyTorch MergeBot
c5e7588613 Revert "[dynamo] preserve some FX node metadata of GraphModules (#107067)"
This reverts commit 1d42148fee.

Reverted https://github.com/pytorch/pytorch/pull/107067 on behalf of https://github.com/DanilBaibak due to Break internal build ([comment](https://github.com/pytorch/pytorch/pull/107067#issuecomment-1717321061))
2023-09-13 09:59:33 +00:00
William Wen
1d42148fee [dynamo] preserve some FX node metadata of GraphModules (#107067)
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.

This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.

The added unit test demonstrates the added functionality of this PR.

~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~

~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
2023-09-11 17:11:51 +00:00
PyTorch MergeBot
38fcf77a1b Revert "[dynamo] Add BACKEND_MATCH guard to detect and recompile when backend changes (#107337)"
This reverts commit 1a64ec7dd4.

Reverted https://github.com/pytorch/pytorch/pull/107337 on behalf of https://github.com/huydhn due to Sorry for reverting your change but inductor perf smoke test starts to regress after this ([comment](https://github.com/pytorch/pytorch/pull/107337#issuecomment-1710974588))
2023-09-08 02:03:48 +00:00
ydwu4
1a64ec7dd4 [dynamo] Add BACKEND_MATCH guard to detect and recompile when backend changes (#107337)
**Motivation:**
We try to make torch.cond use torch.compile automatically so that we could error out when there is side-effects in the branches and correctly handle the closures.

Before this PR, we have a warning if we don't turn on a config raise_on_backend_change (turning it on gives us an error) for the following code:
```python
def foo()

# Inside torch.cond, we'd like to do something like
torch.compile(foo, backend="eager", fullgraph=True)(...)
...
# Users may then call torch.compile somewhere else.
# Dynamo will use the cached code of foo for "eager" backend
# but we expect dynamo to recompile with "inductor" backend.
torch.compile(foo, backend="inductor")(...)
```

This PR adds a BACKEND_MATCH guard. Effectively, it implements a per-backend cache. In the above example, the cached code for "eager" won't work for "inductor" due to guard check failures and the second torch.compile will do a re-compilation. In the future, it might be useful to have something like a configuration guard that guards against dynamo configuration changes across different compiles (e.g. compile a function with fullgraph=False then compile it again with fullgraph=True).

**Implementation:**
1. We add a guarded_backend_cache and check the most_recent_backend against the backend associated with cached code. We also remove the raise_on_backend_change flag.

2. Then newly added context manager and guard adds more lines for debug log so we change the uppper limit from 50 to 55.

**Test Plan:**
Removed original tests that raise on different backend and add a new test to test whether the BACKEND_MATCH guard can guard against backend change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107337
Approved by: https://github.com/jansel
2023-09-07 22:45:54 +00:00