Summary:
This is important for writing aten IR based graph transformation.
```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']
In [8]: torch.ops.aten.reshape.default(torch.rand(1,2), shape=[2])
Out[8]: tensor([0.7584, 0.4834])
# === CANNOT CALL `self` BY KWARGS ===
In [7]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[7], line 1
----> 1 torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
TypeError: OpOverload.__call__() got multiple values for argument 'self'
```
# Where's the problem?
1. the aten ops first arg is usually named `self` (aten/src/ATen/native/native_functions.yaml)
2. Unfortunately, in `torch._ops.{OpOverload, OpOverloadPacket}.__call__()`, the first arg is (by python convention) named `self` too.
So when call `self` by kwargs, `OpOverloadPacket.__call__` received:
```
OpOverloadPacket.__call__(self, {"self": ...})
```
It is Python that does not allow some argument named "arg" to appear twice. and hence
> TypeError: OpOverload.__call__() got multiple values for argument 'self'
# How to fix?
**Note that**, in above, `self` is an instance of `OpOverloadPacket`, and the "self" kwarg is the input tensor to the aten op. To fix, we only need to differentiate the two `self`s.
In Python, first arg of a method does not need to be named `self`. So we change the `__call__` definition to:
```
def __call__(_self, ...):
```
Now the call becomes:
```
OpOverloadPacket.__call__(_self, {"self": ...})
```
where:
* `_self` is the instance to the `OpOverloadPacket`
* `"self"` is the input tensor to the aten op.
Test Plan:
```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']
In [3]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
Out[3]: tensor([0.5127, 0.3051])
```
Differential Revision: D51731996
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114920
Approved by: https://github.com/houseroad
Constant time access of first value in collection. This is a constant time operation instead of converting the item to a list to get the first item which is linear. The rule is turned on which automatically autofixes and enforces this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115507
Approved by: https://github.com/malfet
Fixes#111222
This pull request adds tests for factory functions that create tensors with a strided layout. The tests are added to the `test_ops.py` file and check the behavior of the `empty`, `zeros`, `ones`, and `rand` factory functions when used with the `layout=torch.strided` argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111463
Approved by: https://github.com/lezcano
## Context
Introduce a core decomposition for `aten.floor_divide` into other `aten` ops, and add it to the core ATen decomposition table.
This replaces the decomposition of `floor_divide` that was used by Inductor. I noticed there was a note on that decomposition
```
# TorchInductor-only decomposition. It should not be taken to core.
# See https://github.com/pytorch/torchdynamo/pull/1120
```
but couldn't discern the reason why this is the case. cc: @lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110046
Approved by: https://github.com/peterbell10
Python decompositions wrapped by `out_wrapper` need to be unwrapped before compiling with TorchScript since:
- `out_wrapper` extends the decompositions signature with an out parameter, however this `out` parameter is not present in the source code of the original decomposition so the resulting `ScriptFunction` will not have an `out` parameter
- `out_wrapper` is in the `torch._prims_common.wrappers` module so its `globals()` are different to the globals of the decomposition to be wrapped. This may cause symbol resolution to fail with the TorchScript compiler since it is compiling the unwrapped decomps source code rather than the wrapper
The python decomposition for `aten.trace` is wrapped as an example, other decompositions are to be fixed in https://github.com/pytorch/pytorch/pull/107707
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109367
Approved by: https://github.com/lezcano
This fixes numerous tests which were xfailing. For instance, the
`_segment_reduce.lengths` OpInfo test, which was previously relying on
the fallback kernel to determine the shape of the meta tensor. The
fallback kernel would fail with
segment_reduce(): Expected all rows of lengths along axis to sum to data.size(lengths.dim()-1) when !unsafe.
as it was trying to read the values of a meta tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109359
Approved by: https://github.com/ezyang
Fixes#68972
Relands #107246
To avoid causing Meta-internal CI failures, this PR avoids always asserting that the default dtype is float in the `TestCase.setUp/tearDown` methods. Instead, the assert is only done if `TestCase._default_dtype_check_enabled == True`. `_default_dtype_check_enabled` is set to True in the `if __name__ == "__main__":` blocks of all the relevant test files that have required changes for this issue
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108088
Approved by: https://github.com/ezyang
When exporting dropout with cpu tensor, we get following graph module
```
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[512, 10]):
empty_memory_format: f32[512, 10] = torch.ops.aten.empty.memory_format([512, 10], dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False, memory_format = torch.contiguous_format)
bernoulli_p: f32[512, 10] = torch.ops.aten.bernoulli.p(empty_memory_format, 0.9); empty_memory_format = None
div_scalar: f32[512, 10] = torch.ops.aten.div.Scalar(bernoulli_p, 0.9); bernoulli_p = None
mul_tensor: f32[512, 10] = torch.ops.aten.mul.Tensor(arg0_1, div_scalar); arg0_1 = div_scalar = None
return (mul_tensor,)
```
In addition, if we export with eval() mode, we will have an empty graph.
However, when exporting with cuda tensor, we got
```
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[512, 10]):
native_dropout_default = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True); arg0_1 = None
getitem: f32[512, 10] = native_dropout_default[0]; native_dropout_default = None
return (getitem,)
```
and exporting under eval() mode will still have a dropout node in graph.
This PR make exporting with CPU tensor also produce aten.native_dropout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106274
Approved by: https://github.com/ezyang
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
Currently there are FFT operators which raise `UnsupportedOperatorException`
because their meta implementations sometimes give incorrect strides. This works
around the problem for static shapes by falling back to eager. Though we still
don't support calls with dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106319
Approved by: https://github.com/ezyang
Enabling more tests on ASAN, meanwhile we disable float-divide-by-zero and float-cast-overflow, both are disabled because they are also disabled by default in latest clang.
The following cited doc explains the reasons.
```
-fsanitize=float-cast-overflow: Conversion to, from, or between floating-point types
which would overflow the destination. Because the range of representable values
for all floating-point types supported by Clang is [-inf, +inf], the only cases detected are
conversions from floating point to integer types.
-fsanitize=float-divide-by-zero: Floating point division by zero.
This is undefined per the C and C++ standards,
but is defined by Clang (and by ISO/IEC/IEEE 60559 / IEEE 754) as producing
either an infinity or NaN value,
so is not included in -fsanitize=undefined.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103647
Approved by: https://github.com/kit1980
- Added ops that were missing under `__all__`.
- Some misc changes to helper functions to make them private.
- Set correct `fn.__module__` for `fn` created by `_make_alias`, when called in another module.
All modification largely references results from a hacked version of `test_public_bindings::test_correct_module_names`.
By default `torch._refs` is not included in the test because it is technically a private package.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103712
Approved by: https://github.com/lezcano
The current behaviour for dynamo is to set the dtype to torch.int64 for integral types if the dtype is not specified explicitly which results in mismatched behaviour as compared to eager mode. In eager mode the semantics are:
- If both out is specified and dtype is specified then they have to match
- If dtype is not specified but out is specified then the dtype is set to match the out dtype
- If neither dtype nor out is set then the dtype is set to kLong if it is a bool or an integral type
Fixes#100698
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103037
Approved by: https://github.com/ngimel