Commit Graph

370 Commits

Author SHA1 Message Date
kflu
c5dcb50c00 [easy] aten ops: support passing all args as kwargs, including self (#114920)
Summary:
This is important for writing aten IR based graph transformation.

```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']

In [8]: torch.ops.aten.reshape.default(torch.rand(1,2), shape=[2])
Out[8]: tensor([0.7584, 0.4834])

# === CANNOT CALL `self` BY KWARGS ===

In [7]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[7], line 1
----> 1 torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])

TypeError: OpOverload.__call__() got multiple values for argument 'self'

```

# Where's the problem?

1. the aten ops first arg is usually named `self` (aten/src/ATen/native/native_functions.yaml)
2. Unfortunately, in `torch._ops.{OpOverload, OpOverloadPacket}.__call__()`, the first arg is (by python convention) named `self` too.

So when call `self` by kwargs, `OpOverloadPacket.__call__` received:

```
OpOverloadPacket.__call__(self, {"self": ...})
```

It is Python that does not allow some argument named "arg" to appear twice. and hence

> TypeError: OpOverload.__call__() got multiple values for argument 'self'

# How to fix?

**Note that**, in above, `self` is an instance of `OpOverloadPacket`, and the "self" kwarg is the input tensor to the aten op. To fix, we only need to differentiate the two `self`s.

In Python, first arg of a method does not need to be named `self`. So we change the `__call__` definition to:

```
def __call__(_self, ...):
```

Now the call becomes:

```
OpOverloadPacket.__call__(_self, {"self": ...})
```

where:
* `_self` is the instance to the `OpOverloadPacket`
* `"self"` is the input tensor to the aten op.

Test Plan:
```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']

In [3]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
Out[3]: tensor([0.5127, 0.3051])
```

Differential Revision: D51731996

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114920
Approved by: https://github.com/houseroad
2023-12-16 18:32:58 +00:00
rzou
3477a2ee03 unMarkDynamoStrictTest on OpInfo-based tests (#115856)
These take too long to run under strict mode. We'll worry about them
later. Note that these decorators don't do anything yet (unless we flip
the default from non-strict to strict).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115856
Approved by: https://github.com/voznesenskym
ghstack dependencies: #115845, #115855
2023-12-15 01:22:31 +00:00
Isuru Fernando
505574c46a Add decomposition for torch.block_diag (#115096)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115096
Approved by: https://github.com/peterbell10
2023-12-11 20:04:22 +00:00
Aaron Gokaslan
794545c11f [BE]: Enable RUF015 codebase wide (#115507)
Constant time access of first value in collection. This is a constant time operation instead of converting the item to a list to get the first item which is linear. The rule is turned on which automatically autofixes and enforces this.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115507
Approved by: https://github.com/malfet
2023-12-11 15:51:01 +00:00
Isuru Fernando
e4a88d9581 Convert SymInts to SymFloats with SymPy (#113683)
Fixes #109365

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113683
Approved by: https://github.com/ezyang, https://github.com/lezcano
2023-11-20 23:35:40 +00:00
Evgeni Burovski
237cbd5be6 BUG: trace frames with numpy scalar -> ndarray functions (#112959)
Fixes #112951

Make dynamo detect that `np.arange(3)` returns a FakeTensor, so the frame needs to be traced.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112959
Approved by: https://github.com/lezcano
2023-11-17 03:00:24 +00:00
Aryan Gupta
8cee0a25bd fix: Flake8-BugBear code B-026 for PyTorch (#111362)
Fixes #106571

I have fixed the B-026 error codes for Flake8 tests on the codebase. Please review and tell me anything else to do.
Thanks and excited for this first contribution to PyTorch.

Also I refer this issue which introduced [B-026](https://github.com/PyCQA/flake8-bugbear/issues/286) in `pytest-bugbear` and discuss the error code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111362
Approved by: https://github.com/Skylion007
2023-11-07 21:38:18 +00:00
Peter Bell
66c32d099a Use pytree.arg_tree_leaves everywhere (#112394)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112394
Approved by: https://github.com/lezcano
ghstack dependencies: #112391, #112392, #112393
2023-10-31 15:57:06 +00:00
Peter Bell
bbd5b935e4 Use pytree.tree_leaves everywhere (#112324)
This changes all the instances I could find of `tree_flatten(...)[0]` or
`x, _ = tree_flatten` to use `tree_leaves`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112324
Approved by: https://github.com/lezcano
ghstack dependencies: #112327, #112323
2023-10-30 03:39:04 +00:00
William Wen
a380bf3297 [dynamo, test] skip flaky dynamo-wrapped tests (#112310)
ghstack-source-id: 7a87e33e7513e7924e4513b6473284562989ed4c
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112309

Skip flaky tests reported by
- https://github.com/pytorch/pytorch/issues/111825
- https://github.com/pytorch/pytorch/issues/111826
- https://github.com/pytorch/pytorch/issues/111909
- https://github.com/pytorch/pytorch/issues/112142
- https://github.com/pytorch/pytorch/issues/112220

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112310
Approved by: https://github.com/xmfan
2023-10-28 04:14:57 +00:00
Isuru Fernando
c120e5606e Use ops_and_refs in test_ops.py instead of _ops_and_refs (#112022)
`ops_and_refs` and `_ops_and_refs` have the same definition.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112022
Approved by: https://github.com/lezcano
2023-10-27 18:37:05 +00:00
Isuru Fernando
fdbb73fa4e Check both ops and refs in test_strided_layout (#112160)
Trying #112023 again to see if CLA issue is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112160
Approved by: https://github.com/lezcano, https://github.com/Neilblaze
2023-10-27 15:35:34 +00:00
alhridoy
0c64ac0d3a Add tests for strided layout in factory functions (#111463)
Fixes #111222
This pull request adds tests for factory functions that create tensors with a strided layout. The tests are added to the `test_ops.py` file and check the behavior of the `empty`, `zeros`, `ones`, and `rand` factory functions when used with the `layout=torch.strided` argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111463
Approved by: https://github.com/lezcano
2023-10-24 17:05:44 +00:00
Philip Meier
973c87b320 raise instead of skip in test/test_meta.py (#110939)
Supersedes #109004.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110939
Approved by: https://github.com/lezcano, https://github.com/kurtamohler
2023-10-17 10:17:43 +00:00
Jez Ng
ddb0c26511 [inductor] Re-enable more fixed tests (#110798)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110798
Approved by: https://github.com/Skylion007
2023-10-09 04:36:51 +00:00
Jez Ng
dddf581da7 [dynamo] Add graph break on requires_grad_() (#110053)
Fixes #107861.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110053
Approved by: https://github.com/eellison
2023-10-04 06:22:16 +00:00
SS-JIA
5df8aca994 [core IR] Add a core decomposition for floor_divide (#110046)
## Context

Introduce a core decomposition for `aten.floor_divide` into other `aten` ops, and add it to the core ATen decomposition table.

This replaces the decomposition of `floor_divide` that was used by Inductor. I noticed there was a note on that decomposition

```
# TorchInductor-only decomposition. It should not be taken to core.
# See https://github.com/pytorch/torchdynamo/pull/1120
```

but couldn't discern the reason why this is the case. cc: @lezcano

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110046
Approved by: https://github.com/peterbell10
2023-09-26 08:39:21 +00:00
SS-JIA
7de669f2f9 [core IR] Remove trunc decomp and add trunc to core (#109902)
Following up from [this comment](https://github.com/pytorch/pytorch/pull/109319#discussion_r1330803226). Remove the decomposition for `trunc`, and add it as a core operator.

Going forward, provide similar treatment for operators that map cleanly to hardware instructions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109902
Approved by: https://github.com/peterbell10
2023-09-25 18:18:06 +00:00
Mwiza Kunda
6b7b9c796e Fix registering jit decompositions for jvp for out wrapped decomps (#109367)
Python decompositions wrapped by `out_wrapper` need to be unwrapped before compiling with TorchScript since:
- `out_wrapper` extends the decompositions signature with an out parameter, however this `out` parameter is not present in the source code of the original decomposition so the resulting `ScriptFunction` will not have an `out` parameter
- `out_wrapper` is in the `torch._prims_common.wrappers` module so its `globals()` are different to the globals of the decomposition to be wrapped. This may cause symbol resolution to fail with the TorchScript compiler since it is compiling the unwrapped decomps source code rather than the wrapper

The python decomposition for `aten.trace` is wrapped as an example, other decompositions are to be fixed in https://github.com/pytorch/pytorch/pull/107707
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109367
Approved by: https://github.com/lezcano
2023-09-21 16:36:51 +00:00
Salil Desai
2e721aab98 [Decomposition] Trunc (#109319)
Summary:
Add Decomp for Trunc and add it to core_aten_decompositions

Differential Revision: D49042033

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109319
Approved by: https://github.com/SherlockNoMad
2023-09-19 13:30:13 +00:00
Jez Ng
7f3885137f Add meta function for _segment_reduce (#109359)
This fixes numerous tests which were xfailing. For instance, the
`_segment_reduce.lengths` OpInfo test, which was previously relying on
the fallback kernel to determine the shape of the meta tensor. The
fallback kernel would fail with

    segment_reduce(): Expected all rows of lengths along axis to sum to data.size(lengths.dim()-1) when !unsafe.

as it was trying to read the values of a meta tensor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109359
Approved by: https://github.com/ezyang
2023-09-16 13:31:03 +00:00
PyTorch MergeBot
41bd0fde7e Revert "Remove fixed skips (#108674)"
This reverts commit ab9fb03d6f.

Reverted https://github.com/pytorch/pytorch/pull/108674 on behalf of https://github.com/huydhn due to Sorry for picking this up a bit late, but with https://github.com/pytorch/pytorch/pull/108647 reverted, these tests are failing again. So we need to wait for the PR to reland before we can land this change ([comment](https://github.com/pytorch/pytorch/pull/108674#issuecomment-1715202692))
2023-09-12 08:04:32 +00:00
Ken Jin
c458fa0d35 Decompose/add reference for view_as_complex (#108005)
Aten source: d4a99631dd/aten/src/ATen/native/ComplexHelper.h (L78)

Documentation reference:
https://pytorch.org/docs/stable/generated/torch.view_as_complex.html

Note: this adds a new primitive `view_of_dtype`, which is trivially implemented, as its meta function is already implemented elsewhere.

Finally, this is not registered as a decomposition (yet), because TorchInductor does not yet support complex types. It should be added once we do.

Closes https://github.com/pytorch/pytorch/issues/108020 as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108005
Approved by: https://github.com/peterbell10, https://github.com/ezyang
2023-09-07 23:49:20 +00:00
eellison
ab9fb03d6f Remove fixed skips (#108674)
These no longer fail with TEST_WITH_TORCHINDUCTOR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108674
Approved by: https://github.com/desertfire
2023-09-07 17:36:56 +00:00
Kurt Mohler
3f88e3105f Reland: Remove remaining global set_default_dtype calls from tests (#108088)
Fixes #68972

Relands #107246

To avoid causing Meta-internal CI failures, this PR avoids always asserting that the default dtype is float in the `TestCase.setUp/tearDown` methods. Instead, the assert is only done if `TestCase._default_dtype_check_enabled == True`. `_default_dtype_check_enabled` is set to True in the `if __name__ == "__main__":` blocks of all the relevant test files that have required changes for this issue

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108088
Approved by: https://github.com/ezyang
2023-09-07 03:04:34 +00:00
PyTorch MergeBot
43527d41a2 Revert "Remove fixed skips (#108674)"
This reverts commit 518cfda2dd.

Reverted https://github.com/pytorch/pytorch/pull/108674 on behalf of https://github.com/huydhn due to Sorry for reverting this, but one test is failing on inductor 518cfda2dd, and it seems easier to revert this than disabling the test ([comment](https://github.com/pytorch/pytorch/pull/108674#issuecomment-1709310192))
2023-09-07 00:56:46 +00:00
eellison
518cfda2dd Remove fixed skips (#108674)
These no longer fail with TEST_WITH_TORCHINDUCTOR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108674
Approved by: https://github.com/desertfire
2023-09-06 22:33:43 +00:00
Guilherme Leobas
7e878c9d10 Add decomposition for aten.take_along_dim (#108185)
xref #107875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108185
Approved by: https://github.com/lezcano
2023-09-04 13:49:53 +00:00
lezcano
239ee76177 Add refs/decomps for dot/vdot (#108194)
Follow-up on https://github.com/pytorch/pytorch/issues/108127#issuecomment-1698142427

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108194
Approved by: https://github.com/peterbell10
ghstack dependencies: #108188
2023-08-31 15:30:23 +00:00
Sherlock Huang
ee4b99cc3a Decomp for aten.dropout (#106274)
When exporting dropout with cpu tensor, we get following graph module
```
    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: f32[512, 10]):
            empty_memory_format: f32[512, 10] = torch.ops.aten.empty.memory_format([512, 10], dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False, memory_format = torch.contiguous_format)
            bernoulli_p: f32[512, 10] = torch.ops.aten.bernoulli.p(empty_memory_format, 0.9);  empty_memory_format = None
            div_scalar: f32[512, 10] = torch.ops.aten.div.Scalar(bernoulli_p, 0.9);  bernoulli_p = None
            mul_tensor: f32[512, 10] = torch.ops.aten.mul.Tensor(arg0_1, div_scalar);  arg0_1 = div_scalar = None
            return (mul_tensor,)
```

In addition, if we export with eval() mode, we will have an empty graph.

However, when exporting with cuda tensor, we got
```
    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: f32[512, 10]):
            native_dropout_default = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True);  arg0_1 = None
            getitem: f32[512, 10] = native_dropout_default[0];  native_dropout_default = None
            return (getitem,)
```
and exporting under eval() mode will still have a dropout node in graph.

This PR make exporting with CPU tensor also produce aten.native_dropout.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106274
Approved by: https://github.com/ezyang
2023-08-23 21:12:37 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Ivan Yashchuk
c913f3857f Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 22:29:32 +00:00
PyTorch MergeBot
891bb259f8 Revert "Remove dynamo+nvfuser (#105789)"
This reverts commit 6030151d37.

Reverted https://github.com/pytorch/pytorch/pull/105789 on behalf of https://github.com/DanilBaibak due to Break a lot of tests on main. ([comment](https://github.com/pytorch/pytorch/pull/105789#issuecomment-1669710571))
2023-08-08 14:20:32 +00:00
Ivan Yashchuk
6030151d37 Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 13:29:31 +00:00
Peter Bell
ab6efb1649 [pt2] Add reference implementations of torch.{stft,istft} (#106400)
This allows symbolic shapes to be traced through `torch.stft` and `torch.istft`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106400
Approved by: https://github.com/lezcano
ghstack dependencies: #106319
2023-08-07 20:59:30 +00:00
Peter Bell
d4d090e2da [FakeTensor] Workaround FFT ops with incorrect meta strides (#106319)
Currently there are FFT operators which raise `UnsupportedOperatorException`
because their meta implementations sometimes give incorrect strides. This works
around the problem for static shapes by falling back to eager. Though we still
don't support calls with dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106319
Approved by: https://github.com/ezyang
2023-08-07 20:59:30 +00:00
Nikita Karetnikov
0ee3b84021 [pt2] add meta for cholesky_inverse (#106120)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106120
Approved by: https://github.com/ezyang
2023-07-29 17:16:20 +00:00
Nikita Karetnikov
80755884be [pt2] add meta for cholesky (#106115)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106115
Approved by: https://github.com/Skylion007, https://github.com/ezyang
2023-07-29 17:16:20 +00:00
Aaron Gokaslan
6d43c89f37 [BE]: Update Ruff to 0.0.280 (#105724)
Removes unusued loop values in python dictionary iteration. Automated fix from Ruff master

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105724
Approved by: https://github.com/ezyang, https://github.com/janeyx99
2023-07-22 23:03:34 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
Justin Chu
73e1455327 [BE] Enable ruff's UP rules and autoformat test/ (#105434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434
Approved by: https://github.com/albanD
2023-07-19 20:36:06 +00:00
Kurt Mohler
ffce2492af Remove set_default_dtype calls from jit and ops tests (#105072)
Part of #68972

This only attempts to avoid setting the default dtype for `test_jit.py` and `test_ops.py`. There are other tests, like `test_nn.py`, which will be addressed in follow up PRs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105072
Approved by: https://github.com/ezyang
2023-07-15 03:18:33 +00:00
cyy
54cb61f7d9 enable ASAN on some tests (#103647)
Enabling more tests on ASAN, meanwhile we disable float-divide-by-zero and float-cast-overflow, both are disabled because they are also disabled by default in latest clang.
The following cited doc explains the reasons.
```
-fsanitize=float-cast-overflow: Conversion to, from, or between floating-point types
which would overflow the destination. Because the range of representable values
for all floating-point types supported by Clang is [-inf, +inf], the only cases detected are
conversions from floating point to integer types.
-fsanitize=float-divide-by-zero: Floating point division by zero.
This is undefined per the C and C++ standards,
 but is defined by Clang (and by ISO/IEC/IEEE 60559 / IEEE 754) as producing
either an infinity or NaN value,
so is not included in -fsanitize=undefined.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103647
Approved by: https://github.com/kit1980
2023-06-28 02:17:14 +00:00
Nikita Karetnikov
c40fa8b614 [inductor] remove fft and svd ops from fake_incorrect_kernels (#103616)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103616
Approved by: https://github.com/eellison
2023-06-22 03:01:43 +00:00
Aleksandar Samardžić
09fdea8564 Fix autograd issue with identity conversions (#92022)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92022
Approved by: https://github.com/pearu, https://github.com/mtaaooby, https://github.com/amjames, https://github.com/cpuhrsch
2023-06-21 21:23:03 +00:00
BowenBao
724a1ba2de Tidy __all__ under torch._refs (#103712)
- Added ops that were missing under `__all__`.
- Some misc changes to helper functions to make them private.
- Set correct `fn.__module__` for `fn` created by `_make_alias`, when called in another module.

All modification largely references results from a hacked version of `test_public_bindings::test_correct_module_names`.
By default `torch._refs` is not included in the test because it is technically a private package.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103712
Approved by: https://github.com/lezcano
2023-06-20 00:04:58 +00:00
ekkapricious
5d34656fd7 Update dynamo sum dtype handling to match eager (#103037)
The current behaviour for dynamo is to set the dtype to torch.int64 for integral types if the dtype is not specified explicitly which results in mismatched behaviour as compared to eager mode. In eager mode the semantics are:
- If both out is specified and dtype is specified then they have to match
- If dtype is not specified but out is specified then the dtype is set to match the out dtype
- If neither dtype nor out is set then the dtype is set to kLong if it is a bool or an integral type

Fixes #100698

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103037
Approved by: https://github.com/ngimel
2023-06-19 22:26:37 +00:00
vfdev-5
e3d97b6213 [inductor] Added smooth_l1_loss refs (#102077)
Added `smooth_l1_loss` to refs + tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102077
Approved by: https://github.com/lezcano, https://github.com/ngimel
2023-05-24 15:07:08 +00:00