Commit Graph

8 Commits

Author SHA1 Message Date
Tanvir Zaman
25e2578967 Fix bytes_written and bytes_read (#64244)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64244

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64040

In operator cost inference functions, in many places we are using sizeof(x.data_type()). Since data_type() returns a 32 bit integer from [this enum](https://www.internalfb.com/code/fbsource/[15e7ffe4073cf08c61077c7c24a4839504b964a2]/fbcode/caffe2/caffe2/proto/caffe2.proto?lines=20), we are basically always getting 4 for sizeof(x.data_type()) no matter what actual data type x has. Big thanks to Jack Langman for specifically pointing to this bug.

We would instead use the size in bytes based on actual data type.

Test Plan:
Added unit tests BatchMatMulMemCostTest:

buck test //caffe2/caffe2/fb/fbgemm:batch_matmul_op_test -- BatchMatMulMemCostTest

Extended existing unit test test_columnwise_concat for different data types:

buck test //caffe2/caffe2/python/operator_test:concat_op_cost_test -- test_columnwise_concat

Reviewed By: CrazySherman

Differential Revision: D30656698

fbshipit-source-id: d42c0c9a0c5b0ddc5dba39e4994f1f85a5e618bf
2021-09-01 13:35:41 -07:00
Alban Desmaison
c3464e78a4 Revert D30561459: Fix bytes_written and bytes_read
Test Plan: revert-hammer

Differential Revision:
D30561459 (e98173ff34)

Original commit changeset: 976fa5167097

fbshipit-source-id: 43f4c234ca400820fe6db5b4f37a25e14dc4b0dd
2021-08-30 14:59:54 -07:00
Tanvir Zaman
e98173ff34 Fix bytes_written and bytes_read (#64040)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64040

In operator cost inference functions, in many places we are using sizeof(x.data_type()). Since data_type() returns a 32 bit integer from [this enum](https://www.internalfb.com/code/fbsource/[15e7ffe4073cf08c61077c7c24a4839504b964a2]/fbcode/caffe2/caffe2/proto/caffe2.proto?lines=20), we are basically always getting 4 for sizeof(x.data_type()) no matter what actual data type x has. Big thanks to Jack Langman for specifically pointing to this bug.

We would instead use the size in bytes based on actual data type.

Test Plan:
Added unit tests BatchMatMulMemCostTest:

buck test //caffe2/caffe2/fb/fbgemm:batch_matmul_op_test -- BatchMatMulMemCostTest

Extended existing unit test test_columnwise_concat for different data types:

buck test //caffe2/caffe2/python/operator_test:concat_op_cost_test -- test_columnwise_concat

Differential Revision: D30561459

fbshipit-source-id: 976fa5167097a35af548498480001aafd7851d93
2021-08-30 12:57:31 -07:00
Jongsoo Park
086a2e7a4e [caffe2] add cost inference for FusedFakeQuantFC and FusedFakeQuantFCGradient (#44840)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44840

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44762

Move CostInferenceForFCGradient to fc_inference.cc/h to be used in multiple .cc files.

Test Plan: CI

Reviewed By: qizzzh

Differential Revision: D23714877

fbshipit-source-id: d27f33e270a93b0e053f2af592dc4a24e35526cd
2020-09-17 14:07:17 -07:00
Jongsoo Park
c10662962c remove redundant inference functions for FC (#17407)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17407

As title says

Reviewed By: csummersea

Differential Revision: D14177921

fbshipit-source-id: e48e1086d37de2c290922d1f498e2d2dad49708a
2019-02-22 20:13:20 -08:00
Lin Yang
d042914221 FC shape inference should use int64_t (#15961)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15961

as title

Reviewed By: yinghai

Differential Revision: D13634427

fbshipit-source-id: ec7d168b6272f0dac8a693401cfd0bea368f929a
2019-01-11 14:28:39 -08:00
bddppq
f94ae3ba1d
Update from facebook (#7696)
* Fix handling of empty batches in SumReduceDimsOp

As titled

* Deferrable async_scheduling finishRun fix

Proper order of finishing run operations in deferrable_async_scheduling net

* Simplify exception handling in async_scheduling

Simplify exception handling, no need to busy wait, thread that processes the
last task can finish the run

* [C2]worker_coordinator_memorize_worker_ids

As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids

* Add unit test for nets with no type set

* Ignore total length argument in sympolic_pad_packed_sequence

1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence)
2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp

* Add support for MKLDNN to async_scheduling

Just add MKLDNN as a possible CPU option to async_scheduling's pool function

* [AuFL][ensemble] support branch output for prediction

This diff supports using predictions from different branches and thus enables model ensembling (not fully independent).

* Fix a bug in add_loss in layer_model_helper

As titled.

* Support lradaption for adam

1.lr adaption operator
2.apply to dense adam

* Perf tweaks for async_scheduling

Restore single pool option + remove unnecessary (no-ops) calls

* add quantization to SparseSimdAdagradOp

add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next

* [sr] [codemod] Change all SR callsites to use new API

@allow-large-files

This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`.

```
cd ~/fbsource/fbcode
find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \;
```

Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes).

* Back out "Fix handling of empty batches in SumReduceDimsOp"

Original commit changeset: 282da1730cc2 This commit is blocking the
Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this
diff depends on will be reverted in the sync D7990948 which causes this to
break. The sync diff cannot be patched with this reversion because it must be
landed against base revision 5c8c099 , and D7881937 must not be included in the
sync diff because it is breaking GPU tests that are not available in sandcastle
: https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console
for one example.

* Add the flow to support operator benchmark

1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark

* [tum][gpu] Connect DPM trainer with flow and unit tests

This diff:
- Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases.
- Add correct tags to the TUM code, so we can do data parallel transform
- pass extra info when instantiation.
- add unit test for using DPM in TUM model

After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking.

* w/o normalized lradaption for adam dense only

The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step

* [fb] Use SharedPromise in DeferrableAsyncSchedulingNet

This code is to simplify DeferrableAsyncSchedulingNet by removing condition
variable + small fixes

* [tum] implement cuda sparseLengthsMean and LengthsMean

as title

* Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

* Move feature_to_index to FeatureSpec.feature_to_index

move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields

* [Caffe2] Rename bytes_moved to bytes_written

Just a rename in preparation for supporting bytes_read.

* [c2] fix ReduceFrontSumOp for empty case by setting 0

otherwise, it may use the results from last iteration when it's empty batch.

* [Caffe2] [Int8] Improve Intel CPU performance

* [Easy] Improve PrependDim op logging

as titled

* DBFileReader expand db_path using os.path.expanduser(..)

Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves.

* [Caffe2] Add bytes_read to cost structure

We're adding analytical read bytes to cost functions.  This extends the structure accordingly for all CostInference defined operators.
Additionally, some small bug fixes were performed:
1) Cost functions now extract type information of operands instead of assuming float

* Fix sleef on aarch64 for hhvm

@bypass-lint

Rename flag

* Remove duplicated part in caffe2/ideep/operators/conv_op.cc

should be sync error

* Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
2018-05-19 23:10:48 -07:00
Summer Deng
26fbfa959e Integrate fbgemm fp16 with Caffe2
Added C2 operators and python test
Added transformation from FC to FBPackedFC and unit test
2018-03-27 18:10:39 -07:00