Summary:
Previous is https://github.com/pytorch/pytorch/issues/57781
We add now two CUDA bindings to avoid using ctypes to fix a windows issue.
However, we use ctypes to allocate the stream and create its pointer
(we can do this with a 0-dim tensor too if it feels better).
CC. ezyang rgommers ngimel mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59527
Reviewed By: albanD
Differential Revision: D29053062
Pulled By: ezyang
fbshipit-source-id: 661e7e58de98b1bdb7a0871808cd41d91fe8f13f
Summary:
This is required in https://github.com/pytorch/pytorch/pull/57110#issuecomment-828357947
We need to provide means to synchronize on externally allocated streams for dlpack support in python array data api.
cc mruberry rgommers leofang asi1024 kmaehashi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57781
Reviewed By: mrshenli
Differential Revision: D28326365
Pulled By: ezyang
fbshipit-source-id: b67858c8033949951b49a3d319f649884dfd0a91
Summary:
Since caffe2 and torch have been consolidated, CAFFE2_API should be merged with TORCH_API. Addresses a TODO.
Manually edited some references of the removed `CAFFE2_API`:
* `CONTRIBUTING.md`
* `caffe2/proto/CMakeLists.txt`
* `cmake/ProtoBuf.cmake`
* `c10/macros/Export.h`
* `torch/csrc/WindowsTorchApiMacro.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49496
Reviewed By: malfet, samestep
Differential Revision: D25600726
Pulled By: janeyx99
fbshipit-source-id: 7e068d959e397ac183c097d7e9a9afeca5ddd782
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27086
This is a major source of merge conflicts, and AFAICT isn't necessary anymore (it may have been necessary for some mobile build stuff in the past).
This is a commandeer of #25031
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D17687345
Pulled By: ezyang
fbshipit-source-id: bf6131af835ed1f9e3c10699c81d4454a240445f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11688
As a first step to remove static context(merge with allocator), we'll create a
global registries for context constructors, and remove CreateContext function from tensor.
Reviewed By: ezyang, dzhulgakov
Differential Revision: D9779821
fbshipit-source-id: 8b239ea50af7a0556fde2382f58f79194f0e3dc1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11818
To do this, I have to move the static context registry into ATen/core.
I take the opportunity to convert it into an unordered_map.
Reviewed By: Yangqing
Differential Revision: D9924348
fbshipit-source-id: 8d92b9e8b4246ce608eba24ecef7ad5f8b9b6582
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11336
Move `context_base.h` header to `ATen/core` and the implementations are in `caffe2/core/context_base.cc`
Reviewed By: ezyang
Differential Revision: D9670493
fbshipit-source-id: ce5bf2b3b4c80e9b62819f4332ce68af82720055
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11254
Previously we use DeviceType in caffe2.proto directly, but it's an `enum` and have implicit conversion to int, which does not have type safety, e.g. we have to explicitly check for a device type is valid in event.h:
```
template <int d>
struct EventCreateFunctionRegisterer {
explicit EventCreateFunctionRegisterer(EventCreateFunction f) {
static_assert(d < MaxDeviceTypes, "");
Event::event_creator_[d] = f;
}
};
```
at::DeviceType is an `enum class`, and it does not have implicit conversion to int, and provides better type safety guarantees. In this diff we have done the following refactor(taking CPU as an example):
1. caffe2::DeviceType → caffe2::DeviceTypeProto
2. caffe2::CPU → caffe2::PROTO_CPU
3. caffe2::DeviceType = at::DeviceType
4. caffe2::CPU = at::DeviceType::CPU
codemod -d caffe2/caffe2 --extensions h,cc,cpp 'device_type\(\), ' 'device_type(), PROTO_'
+ some manual changes
In short, after this diff, in c++, caffe2::CPU refers to the at::DeviceType::CPU and the old proto caffe2::CPU will be caffe2::PROTO_CPU.
In python side, we have a temporary workaround that alias `caffe2_pb2.CPU = caffe2_pb2.PROOT_CPU` to make the change easier to review and this will be removed later.
Reviewed By: ezyang
Differential Revision: D9545704
fbshipit-source-id: 461a28a4ca74e616d3ee183a607078a717fd38a7
Summary:
Properly annotated all apis for cpu front. Checked with cmake using
cmake -DUSE_ATEN=ON -DUSE_CUDA=OFF -DBUILD_ATEN=ON
and resulting libcaffe2.so has about 11k symbols.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10504
Reviewed By: ezyang
Differential Revision: D9316491
Pulled By: Yangqing
fbshipit-source-id: 215659abf350af7032e9a4b0f28a856babab2454
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: ezyang, houseroad
Differential Revision: D9024330
fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: xw285cornell
Differential Revision: D8121878
fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81