Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65610
- Replace HIP_PLATFORM_HCC with USE_ROCM
- Dont rely on CUDA_VERSION or HIP_VERSION and use USE_ROCM and ROCM_VERSION.
- In the next PR
- Will be removing the mapping from CUDA_VERSION to HIP_VERSION and CUDA to HIP in hipify.
- HIP_PLATFORM_HCC is deprecated, so will add HIP_PLATFORM_AMD to support HIP host code compilation on gcc.
cc jeffdaily sunway513 jithunnair-amd ROCmSupport amathews-amd
Reviewed By: jbschlosser
Differential Revision: D30909053
Pulled By: ezyang
fbshipit-source-id: 224a966ebf1aaec79beccbbd686fdf3d49267e06
Summary:
Sub-step of my attempt to split up the torch_cuda library, as it is huge. Please look at https://github.com/pytorch/pytorch/issues/49050 for details on the split and which files are in which target.
This PR introduces two new macros for Windows DLL purposes, TORCH_CUDA_CPP_API and TORCH_CUDA_CU_API. Both are defined as TORCH_CUDA_API for the time being.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50627
Reviewed By: mruberry
Differential Revision: D25955441
Pulled By: janeyx99
fbshipit-source-id: ff226026833b8fb2fb7c77df6f2d6c824f006869
Summary:
Gets rid of some in-kernel asserts where they can be replaced with static_asserts
Replaces bare in-kernel `assert` in one case with `CUDA_KERNEL_ASSERT` where necessary
replaces host code `assert`s with `TORCH_INTERNAL_ASSERT`
Another group of asserts is in fractional max pooling kernels which should be fixed regardless https://github.com/pytorch/pytorch/issues/39044, the problems there are not just asserts.
I've audited remaining cases of in-kernel asserts, and they are more like `TORCH_INTERNAL_ASSERT`, so they should not happen with invalid user data. I think it's ok to leave them as is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39047
Differential Revision: D21750392
Pulled By: ngimel
fbshipit-source-id: e9417523a2c672284de3515933cb7ed166e56719
Summary:
Per title. https://github.com/pytorch/pytorch/issues/32719 essentially disabled asserts in cuda kernels in release build. Asserts in cuda kernels are typically used to prevent invalid reads/writes, so without asserts invalid read/writes are silent errors in most cases (sometimes they would still cause "illegal memory access" errors, but because of caching allocator this usually won't happen).
We don't need 2 macros, CUDA_ALWAYS_ASSERT and CUDA_KERNEL_ASSERT because all current asserts in cuda kernels are important to prevent illegal memory accesses, and they should never be disabled.
This PR removes macro CUDA_ALWAYS_ASSERT and instead makes CUDA_KERNEL_ASSERT (that is commonly used in the kernels) an asserttion both in release and debug builds.
Fixes https://github.com/pytorch/pytorch/issues/38771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38943
Differential Revision: D21723767
Pulled By: ngimel
fbshipit-source-id: d88d8aa1b047b476d5340e69311e65aff4da5074
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30315
The new structure is that libtorch_cpu contains the bulk of our
code, and libtorch depends on libtorch_cpu and libtorch_cuda.
This is a reland of https://github.com/pytorch/pytorch/pull/29731 but
I've extracted all of the prep work into separate PRs which can be
landed before this one.
Some things of note:
* torch/csrc/cuda/nccl.cpp was added to the wrong list of SRCS, now fixed (this didn't matter before because previously they were all in the same library)
* The dummy file for libtorch was brought back from the dead; it was previously deleted in #20774
In an initial version of the patch, I forgot to make torch_cuda explicitly depend on torch_cpu. This lead to some very odd errors, most notably "bin/blob_test: hidden symbol `_ZNK6google8protobuf5Arena17OnArenaAllocationEPKSt9type_infom' in lib/libprotobuf.a(arena.cc.o) is referenced by DSO"
* A number of places in Android/iOS builds have to add torch_cuda explicitly as a library, as they do not have transitive dependency calculation working correctly
* I had to torch_cpu/torch_cuda caffe2_interface_library so that they get whole-archived linked into torch when you statically link. And I had to do this in an *exported* fashion because torch needs to depend on torch_cpu_library. In the end I exported everything and removed the redefinition in the Caffe2Config.cmake. However, I am not too sure why the old code did it in this way in the first place; however, it doesn't seem to have broken anything to switch it this way.
* There's some uses of `__HIP_PLATFORM_HCC__` still in `torch_cpu` code, so I had to apply it to that library too (UGH). This manifests as a failer when trying to run the CUDA fuser. This doesn't really matter substantively right now because we still in-place HIPify, but it would be good to fix eventually. This was a bit difficult to debug because of an unrelated HIP bug, see https://github.com/ROCm-Developer-Tools/HIP/issues/1706Fixes#27215 (as our libraries are smaller), and executes on
part of the plan in #29235.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18790941
Pulled By: ezyang
fbshipit-source-id: 01296f6089d3de5e8365251b490c51e694f2d6c7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29731
The new structure is that libtorch_cpu contains the bulk of our
code, and libtorch depends on libtorch_cpu and libtorch_cuda.
Some subtleties about the patch:
- There were a few functions that crossed CPU-CUDA boundary without API macros. I just added them, easy enough. An inverse situation was aten/src/THC/THCTensorRandom.cu where we weren't supposed to put API macros directly in a cpp file.
- DispatchStub wasn't getting all of its symbols related to static members on DispatchStub exported properly. I tried a few fixes but in the end I just moved everyone off using DispatchStub to dispatch CUDA/HIP (so they just use normal dispatch for those cases.) Additionally, there were some mistakes where people incorrectly were failing to actually import the declaration of the dispatch stub, so added includes for those cases.
- torch/csrc/cuda/nccl.cpp was added to the wrong list of SRCS, now fixed (this didn't matter before because previously they were all in the same library)
- The dummy file for libtorch was brought back from the dead; it was previously deleted in #20774
- In an initial version of the patch, I forgot to make torch_cuda explicitly depend on torch_cpu. This lead to some very odd errors, most notably "bin/blob_test: hidden symbol `_ZNK6google8protobuf5Arena17OnArenaAllocationEPKSt9type_infom' in lib/l
ibprotobuf.a(arena.cc.o) is referenced by DSO"
- A number of places in Android/iOS builds have to add torch_cuda explicitly as a library, as they do not have transitive dependency calculation working correctly. This situation also happens with custom C++ extensions.
- There's a ROCm compiler bug where extern "C" on functions is not respected. There's a little workaround to handle this.
- Because I was too lazy to check if HIPify was converting TORCH_CUDA_API into TORCH_HIP_API, I just made it so HIP build also triggers the TORCH_CUDA_API macro. Eventually, we should translate and keep the nature of TORCH_CUDA_API constant in all cases.
Fixes#27215 (as our libraries are smaller), and executes on
part of the plan in #29235.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18632773
Pulled By: ezyang
fbshipit-source-id: ea717c81e0d7554ede1dc404108603455a81da82
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants). Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.
The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774
Differential Revision: D15769965
Pulled By: kostmo
fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17623
Despite it's generic sounding name, caffe2::DeviceGuard actually
only worked on CUDA devices. Rename it to something that more
clearly spells out its applicability.
I'm not sure if it's the right call, but in this patch I added
'using CUDAGuard = c10::cuda::CUDAGuard', as this seems to be more
in-line with how the Caffe2 codebase is currently written. More
idiomatic c10 namespace style would be to say cuda::CUDAGuard.
Willing to change this if people shout.
This is a respin of D13156470 (#14284)
Reviewed By: dzhulgakov
Differential Revision: D14285504
fbshipit-source-id: 93b8ab938b064572b3b010c307e1261fde0fff3d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15692
It was leading to ocassional crashes with dynamically linked CUDA because runtime was already destroyed.
Also, unique_ptr<T[]> is more suitable than deque<T> for the purpose.
Reviewed By: Yangqing
Differential Revision: D13571988
fbshipit-source-id: 37eb26dfbe361c49160367b53f87bd037c6c0e46
Summary:
xw285cornell
- To make hip files to have unique filename extension we change hip files from _hip.cc to .hip (it's the only blessing option other than .cu in hipcc 3d51a1fb01/bin/hipcc (L552)).
- Change to use host compiler to compile .cc|.cpp files. Previously we use hcc to compile them which is unnecessary
- Change the hipify script to not replace "gpu" with "hip" in the filename of the generated hipified files. Previously we do this because hcc has a bug when linking files that have same filename. We have now changed to use host linker to do linking so this is unnecessary anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14036
Reviewed By: xw285cornell
Differential Revision: D13091813
Pulled By: bddppq
fbshipit-source-id: ea3d887751d8abb39d75f5d5104aa66ce66b9ee0
Summary:
- Speed up hipify_python.py by blacklisting useless (and quite large)
directory trees that it would otherwise recurse into
- Pass around relative paths instead of absolute paths. This makes it
easier to do filename matches based on the root of the tree.
- Redo the streaming output to contain more useful information
- Make it handle c10/cuda correctly, rewrite c10::cuda to
c10::hip, and the header name from CUDAMathCompat.h to
CUDAHIPCompat.h
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13973
Differential Revision: D13062374
Pulled By: ezyang
fbshipit-source-id: f0858dd18c94d449ff5dbadc22534c695dc0f8fb
Summary:
Small edits to caffe2/core hipify to make it compile in fbcode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13457
Reviewed By: bddppq
Differential Revision: D12883472
Pulled By: xw285cornell
fbshipit-source-id: 1da231d721311d105892db13ed726240398ba49e
Summary:
The PR aims to resolve issues related to BUILD_PYTHON and BUILD_TEST after FULL_CAFFE2 is removed on Windows.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11385
Reviewed By: orionr
Differential Revision: D9884906
Pulled By: mingzhe09088
fbshipit-source-id: fc114c0cbff6223f1ec261161e4caecc1fef5dd6
Summary:
This is an experimental build on top of what orionr and mingzhe09088 built.
Essentially, the idea is that we will need separate *_API versions for different shared libraries. If this theory is right, I'll try to clean up the design a bit and document it properly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11266
Reviewed By: orionr
Differential Revision: D9682942
Pulled By: Yangqing
fbshipit-source-id: c79653199e67a1500c9174f39f8b0357324763f3
* Update elementwise ops to support numpy style boradcast
Update elementwise ops to support numpy style boradcast
* Fix sqrt_op
* Fix compare ops
* Fix gradient test
* Fix optimizer legacy broadcast
* Fix legacy broadcast for elementwise ops
* Skip flaky test
* Fix eigen simple binary op
* Fix attention test
* Fix rnn test
* Fix LSTM test
* Fix tan grad
* Fix schema check
* Refactor reduce ops to take flexible input types
* Add DISPATCH_FUNCTION macros in common_gpu.h
* Use macros to reduce switch case in dispatching cuda functions
Summary:
Reason for this change:
(1) Setting/Getting default gpu id doesn't seem to be used at all.
(2) It actually is confusing compared to the CUDA_VISIBLE_DEVICES options etc.
(3) When setting cuda_gpu_id=-1 in the CUDAContext arg, it used to use the
default gpu id but probably we should use the current gpu - so that the caller
will be able to control the device placement.
One use case is for TensorRT - if we have a custom callback layer, then it would
be easier for TRT or whatever caller to set the running device.
Reviewed By: dzhulgakov
Differential Revision: D6740357
fbshipit-source-id: 2ea710e434b10220d5a198e31c93847304636863
Summary: The number of elements in the caffe2 blob can be larger than int32. Use size_t to prevent overflow.
Reviewed By: ajtulloch
Differential Revision: D6278363
fbshipit-source-id: 356e294c667a53360d8a65b56a63a39d5ce3384e
Summary:
These are wrapper functions so that if we run in a Caffe2-only mode, we can
turn the flag on and get some small speedup on cuda device switches.
The purpose of the diff is to allow us to quickly assess the overhead of cuda
device switch functions. Ideally, the caching behavior shall live in the cuda
driver, which is the only safe place to ensure correctness.
If other code is running aside Caffe2 and does not properly do device guard,
this functionality will fail as separate cudaSetDevice() calls will not update
Caffe2's thread local device id. As a result, the functionality is only enabled
when/if one explicitly sets the flag.
This might not be safe, so use with caution.
- cudaGetDevice can go from 90ns to 2ns
- when setting the same device, we can go from 100ns to 2 ns
- when setting a different device, things are the same (1ns overhead on top of 143ns)
Reviewed By: azzolini
Differential Revision: D5709398
fbshipit-source-id: 6255f17a3d41f59a30327436383f306a2287896e
Summary:
There are ad-hoc efforts on avoiding excessive device synchronizations, such as
async_dag, singlethread_async, etc. This diff aims to provide an early design
for a general Event class, that can achieve the following:
(1) It is device agnostic, essentially using a vtable to do cross device record,
wait and synchronization.
(2) Created new functions WaitEvent and Record in the Context class for
interacting with Events.
(3) Exposed the corresponding WaitEvent and Record functions in the OperatorBase
class as well.
An example use case is that, after potential future refactoring, one can achieve
a real async execution per operator by running
op.WaitEvent(previous_event);
op.RunAsync();
op.RecordEvent(this_op_event);
and the next op can do
next_op.WaitEvent(this_op_event);
Right now, I changed async_dag net implementation so that it uses the general
event design. The old Event class is assimilated to the general Event class and
the old Stream class is now essentially taken over by the Context class itself.
Reviewed By: harouwu
Differential Revision: D5648463
fbshipit-source-id: 58bd84d06e4a9977b0b835110ddb2f18be3b7cbc
Summary:
The cuda_fp16.h header in CUDA 9 RC triggers this diagnostic.
It is included by cusparse.h as well, so guarding the
inclusion of only cuda_fp16.h is not enough.
Reviewed By: Yangqing
Differential Revision: D5651995
fbshipit-source-id: 4778a8a793761e7a1dbebf3792b85b33a3e26219
Summary:
Add support for TensorCore convolution and gemm on Volta hardware.
Currently built on top of #1055
Closes https://github.com/caffe2/caffe2/pull/1056
Differential Revision: D5604068
Pulled By: Yangqing
fbshipit-source-id: 100f67e26ed5fabb1dbb31dcd77f7ecb84de4ee7
Summary:
This is the hardware limit set by NVidia. Basically, on Amazon P2 machines that
have 16 gpus, the previous setting will trigger an error. This fixes the issue
but is pending verification from Amazon.
Differential Revision: D4888402
fbshipit-source-id: 8d26a24d6e0476f895b9afdb979144eb8e6b9321
Summary:
In the past we have moved most of the CHECKs to CAFFE_ENFORCE (exceptions).
However, we kept the name "*_CHECK" for cuda calls, and that caused some
confusion especially in the destructor calls: while our destructors are not
written to handle exceptions, these CUDA_CHECKs could actually throw some
exceptions.
As a result, this diff
(1) Renames all cuda related "*_CHECK" to "*_ENFORCE"
(2) Explicitly marked the destructor of core Caffe2 classes as noexcept
(3) Added proper, really-CHECK cuda check macros, and used those in the
corresponding destructors.
This should not change any of existing functionality.
Reviewed By: dzhulgakov
Differential Revision: D4656368
fbshipit-source-id: 32e3056e66c0400156c5ca0187b6151cf3d52404