Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
In our #better-engineering quest of removing all uses of catch in favor of gtest, this PR ports JIT tests to gtest. After #11846 lands, we will be able to delete catch.
I don't claim to use/write these tests much (though I wrote the custom operator tests) so please do scrutinize whether you will want to write tests in the way I propose. Basically:
1. One function declaration per "test case" in test/cpp/jit/test.h
2. One definition in test/cpp/jit/test.cpp
3. If you want to be able to run it in Python, add it to `runJitTests()` which is called from Python tests
4. If you want to be able to run it in C++, add a `JIT_TEST` line in test/cpp/jit/gtest.cpp
Notice also I was able to share support code between C++ frontend and JIT tests, which is healthy.
ezyang apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12030
Differential Revision: D10207745
Pulled By: goldsborough
fbshipit-source-id: d4bae087e4d03818b72b8853cd5802d79a4cf32e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12103
This defers lookup of defaults to the site where we read
out of TensorOptions. THIS IS A BC-BREAKING BEHAVIOR CHANGE,
but we expect the bulk of uses of OptionsGuard don't allocate TensorOptions
inside the OptionsGuard region, and then use it outside of the region
(the situation where behavior could change.)
I also optimize the size of TensorOptions by rearranging fields, so that we
always fit in two 64-bit words.
Reviewed By: goldsborough
Differential Revision: D10052523
fbshipit-source-id: f454a15b4dbf8cd17bc902ab7d2016f2f689ed13
Summary:
Tensors cannot be created globally because of static initialization order issues. So tensors for the optim_baseline test must be created lazily instead. This is fine because these functions will only be called once (in the respective test).
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12301
Differential Revision: D10201008
Pulled By: goldsborough
fbshipit-source-id: 59a041f437354e7c6600e5655b3e2d0647dbde9e
Summary:
This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch.
You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were:
1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt`
2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all.
3. Updated README
ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953
Differential Revision: D9998883
Pulled By: goldsborough
fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
Summary:
The second part of T32009899
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11556
Differential Revision: D9888224
Pulled By: zrphercule
fbshipit-source-id: cb0d0ba5d9c7ad601ee3bce0d932ce9cbbc40908
Summary:
1. Document the Sequential module in the C++ API at a high, why-does-this-exist, and low, how-to-use, level
2. Change the Sequential tests to be in a style that makes them easier to convert to gtest. No code changes.
ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11648
Differential Revision: D9834526
Pulled By: goldsborough
fbshipit-source-id: 39f2f5c6cbbf8ed5a1b69986978c8ef127036de1
Summary:
In order to comply with Python's rules on implicit casting of
non-booleans to booleans, this PR removes implicit casting in favor of
explicit casts via `bool()`
cc zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11503
Differential Revision: D9780869
Pulled By: driazati
fbshipit-source-id: c753acaca27f4e79dddf424c6b04674f44a6aad9
Summary:
Documents the `AnyModule` class in the C++ API.
Also changed the API to be friendlier by default. Calling `AnyModule::forward` used to return an `AnyModule::Value` which you had to call `.get<T>()` on to cast to a concrete type. I changed the name of that `forward` method to `any_forward` and instead made `forward` templated on a `ReturnType` template parameter which you can supply to do the `.get<T>` cast for you automatically. I default this parameter to `torch::Tensor` so that it can often be omitted. So where you used to have to write
```cpp
any_module.forward(...).get<int>();
any_module.forward(...).get<torch::Tensor>();
```
you now write
```cpp
any_module.forward<int>(...);
any_module.forward(...);
```
ebetica ezyang soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11580
Differential Revision: D9798626
Pulled By: goldsborough
fbshipit-source-id: 060b4ea28facaffc417f53b80b846a9dff9acb73
Summary:
This PR:
1. Documents `BatchNorm`,
2. Makes a number of API changes after reconsidering some quirks:
1. The default value for the `stateful` parameter used to be `false`, but the most common usage of `BatchNorm` out of the wild is certainly stateful, and the default in Python is also statefulness. So we change the default to stateful.
2. The `pure_forward` function used to use the internal running mean and variance variables instead of the ones supplied to that function call when `stateful` was true, which certainly seems odd. When you call `pure_forward` you would certainly expect the values you pass explicitly to be used. This is now fixed.
3. Adds tests for `BatchNorm`, finally.
ebetica apaszke ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11484
Reviewed By: pjh5
Differential Revision: D9779618
Pulled By: goldsborough
fbshipit-source-id: 59ba760e085c01454b75644b24b22317b688e459
Summary:
This PR does two things:
1. Replaces the implementation of the `Dropout` module with a call to the ATen function,
2. Replaces `Dropout2d` with a new `FeatureDropout` module that shall take the place of `Dropout2d` and `Dropout3d`. I contemplated calling it `Dropout2d` and making `Dropout3d` an alias for it, but similar to our decision for `BatchNorm{1,2,3}d` (c.f. https://github.com/pytorch/pytorch/pull/9188), we can deviate from Python PyTorch in favor of the ideal-world solution, which is to have a single module, since both actually just call `feature_dropout`.
I also replaced the implementation of `dropout3d` with a call to `dropout2d` in Python. The code is the same and it's easier for developers to parse than having to manually match the tokens to make sure it's really 100% the same code (which it is, if I matched the tokens correctly).
ebetica ezyang SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11458
Differential Revision: D9756603
Pulled By: goldsborough
fbshipit-source-id: fe847cd2cda2b6da8b06779255d76e32a974807c
Summary:
This PR cleans up the `at::Tensor` class by removing all methods that start with an underscore in favor of functions in the `at::` namespace. This greatly cleans up the `Tensor` class and makes it clearer what is the public and non-public API.
For this I changed `native_functions.yaml` and `Declarations.cwrap` to make all underscore methods `variant: function` (or add such a statement to begin with), and then fixed all code locations using the underscore methods.
ezyang colesbury gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11152
Differential Revision: D9683607
Pulled By: goldsborough
fbshipit-source-id: 97f869f788fa56639c05a439e2a33be49f10f543
Summary:
This lets you compile builtin functions from C++ without having a dependence on Python
```cpp
auto module = torch::jit::compile(JIT"(
def my_script_method(x, y):
return torch.relu(x) + y
)");
IValue result = module->run_method("my_script_method", 1, 2);
```
goldsborough zdevito apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10847
Differential Revision: D9543461
Pulled By: driazati
fbshipit-source-id: 6160dae094030ca144a0df93cb9f26aa78c8cf27
Summary:
Linting `torch/csrc/` (non-recursive) and `torch/csrc/autograd` (non-recursive).
Fixed things like:
- `typedef` vs `using`
- Use `.empty()` instead of comparing with empty string/using `.size() == 0`
- Use range for loops instead of old style loops (`modernize-`)
- Remove some `virtual` + `override`
- Replace `stdint.h` with `cstdint`
- Replace `return Type(x, y)` with `return {x, y}`
- Use boolean values (`true`/`false`) instead of numbers (1/0)
- More ...
ezyang apaszke cpuhrsch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11050
Differential Revision: D9597505
Pulled By: goldsborough
fbshipit-source-id: cb0fb4793ade885a8dbf4b10484487b84c64c7f2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11189
Replaces it with an operator TensorOptions() method on
Type, reestablishing the implicit conversion. I originally
wanted to get rid of the implicit conversion entirely, but
there were a *lot* of use-sites, so I added it back to avoid
a huge codemod. In this patch, I only had to fix sites that
used the optional device_index API.
Reviewed By: cpuhrsch
Differential Revision: D9628281
fbshipit-source-id: 5fe2a68eefb77a3c9bb446f03a94ad723ef90210
Summary:
We don't generate a corresponding Type implementations for them,
so this doesn't do anything at the moment.
We don't plan on supporting complex32 in the near future, but
it is added to reserve the name and number in case we do at
some point in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11173
Reviewed By: SsnL
Differential Revision: D9627477
Pulled By: ezyang
fbshipit-source-id: f49a44ab1c92d8a33130c249ac7b234f210a65e6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11023
I'd like TensorOptions to not know anything about Context, so I can
move it to ATen/core without pulling in Context. To do this, the
type() method has to go, since it consults the context to get a Type.
Reviewed By: cpuhrsch
Differential Revision: D9562467
fbshipit-source-id: 61a18a76eb042a5e70b64b963501e9d68c25d4f0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11101
I'd like to invert the dependency between Tensor and TensorOptions
(such that Tensor includes TensorOptions); to do this, I'd prefer
there to not be a Tensor constructor. Eventually, all references
of Tensor will disappear from TensorOptions.h
Reviewed By: cpuhrsch
Differential Revision: D9585627
fbshipit-source-id: dd4a28b2c06b1e55f629762915f03c2b6c34d840
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11096
To discourage willy-nilly use, and make it clearer that it
is not a Variable
Reviewed By: cpuhrsch
Differential Revision: D9583699
fbshipit-source-id: 4fbde0c01ae3deb2c7ef8c125a9028f089b203ae
Summary:
This is along the way of removing Tensor as a member of the tagged union in Scalar. This simplifies ordering dependencies, because currently Scalar and Tensor both depend on each other (so we introduce a TensorBase). Also, this API isn't particularly useful publicly: we can't autograd through Scalars, so you still need a Tensor overload basically everywhere anyway.
I'm undecided what the final API should be here. We could keep a Tensor constructor on Scalar, but have it generate a local scalar; this is convenient but given this API used to be non-synchronizing, it may not be the best.
For now, I'm just using _local_scalar, which is clear, although we should get rid of the prefix _ if that's the API we intend to promote.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10852
Reviewed By: ezyang
Differential Revision: D9496766
Pulled By: gchanan
fbshipit-source-id: 16f39b57536b9707132a5a4d915650c381bb57db
Summary:
apaszke recently ported RNNs from Python into ATen, which means we can replace our implementation in the C++ API (written by ebetica) with the ATen implementation, which cleans up a lot of code (+99, -323). Thanks apaszke!
I also added the `bidirectional` and `batch_first` options to the C++ API RNN options, just because why not.
apaszke ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10761
Differential Revision: D9443885
Pulled By: goldsborough
fbshipit-source-id: b6ef7566b9ced2b2f0b2e1f46c295b6f250c65a8
Summary:
```
Use intrusive_ptr in Storage; replace unique_ptr<Storage> with Storage
This patch does two major changes:
- It replaces the use of Retainable in Storage with a new implementation
based on intrusive_ptr. This will be necessary because Caffe2 will
be using this class to implement intrusive_ptrs, and we need to
line these up for the merge. One good thing about the new implementation is
that the default copy/move constructors/assignment operators and destructor
work automatically, instead of needing to be hardcoded into Storage/Tensor.
- It replaces all places where we returned std::unique_ptr<Storage> with
Storage, collapsing an unnecessary double indirection that is no longer
necessary now that we have correctly working copy/move constructors.
I didn't initially want to do step (2), but it was very important to
eliminate all bare uses of new Storage and new StorageImpl, and this making
the API change was the most straightforward way to do this.
HOW TO FIX YOUR CODE IN THE NEW API
- You no longer need to dereference the result of tensor.storage() to pass
it to set. So, instead of:
x.set_(*y.storage());
just write:
x.set_(y.storage());
- If you were accessing methods on StorageImpl via the pImpl() method, you
must use the dot operator to run pImpl(). Even better; just drop pImpl,
we now have method forwarding. So, instead of:
storage->pImpl()->data();
just do:
storage->data();
// storage.pImpl()->data() works too but is not as recommended
- storage->getDevice() is no more; instead use storage->device().index()
MISC CODE UPDATES
- retain, release, weak_retain, weak_release and weak_lock are now
reimplemented using the "blessed API", and renamed to make it
clearer that their use is discouraged.
- nvcc OS X and general OS X portability improvements to intrusive_ptr
- A new comment in intrusive_ptr describing how stack allocated
intrusive_ptr_targets work differently than heap allocated ones
from c10::make_intrusive
CAVEAT EMPTOR
- THStorage_weakRetain used to work on strong pointers, but it NO LONGER
works with intrusive_ptr. You must reclaim the strong pointer into a
real strong pointer, construct a weak pointer from it, and then release
the strong and weak pointers. See StorageSharing.cpp for an example.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10488
Reviewed By: gchanan
Differential Revision: D9306134
Pulled By: ezyang
fbshipit-source-id: 02d58ef62dab8e4da6131e1a24834a65c21048e2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10478
- Removed Backend constructor from Device, and fixed all
use-sites to use DeviceType::CPU instead of kCPU, or
use a new function backendToDeviceType to perform
the conversion.
- New method device_type() on Type; it gives you the
underlying device type, e.g., CPU for SparseCPU.
- We add backward compatibility for kCPU/kCUDA uses,
by introducing a new special type which is implicitly
convertible to both DeviceType and Backend. As long as
you don't define a function that's overloaded on both
DeviceType and Backend (but not on BackendOrDeviceType),
the implicit conversions will ensure that uses
of at::Device(at::kCPU) keep working. We fixed use-sites in
the library, but did NOT fix sites in the test code, so that
we can exercise this BC code.
Reviewed By: Yangqing
Differential Revision: D9301861
fbshipit-source-id: 9a9d88620500715c7b37e655b4fd761f6dd72716
Summary:
This PR removes the `using Tensor = autograd::Variable;` alias from `torch/tensor.h`, which means `torch::Tensor` is now `at::Tensor`. This PR fixes up some last uses of `.data()` and tidies up the resulting code. For example, I was able to remove `TensorListView` such that code like
```
auto loss = torch::stack(torch::TensorListView(policy_loss)).sum() +
torch::stack(torch::TensorListView(value_loss)).sum();
```
is now
```
auto loss = torch::stack(policy_loss).sum() + torch::stack(value_loss).sum();
```
CC jgehring
ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10516
Differential Revision: D9324691
Pulled By: goldsborough
fbshipit-source-id: a7c1cb779c9c829f89cea55f07ac539b00c78449
Summary:
After talking to users of the C++ API we found that having the tensor type be `autograd::Variable` causes more complications than having it be `at::Tensor`. It used to be a problem because `at::Tensor` didn't have the "autograd API" of variable (e.g. `detach()` or `grad()` methods), but those methods are now on `at::Tensor`. As such, we want to make a last big breaking change to have the tensor type be `at::Tensor`, while factory methods like `torch::ones` will return `Variable`s disguised as `at::Tensor`. This will make many things easier, like calling functions in ATen that take vectors of tensors.
This PR makes a small step in this direction by updating the optimizer classes to not use `.data()` on `Variable` to access the underlying `at::Tensor`. Using `.data()` is effectively a hack to work around our modification rules for tensors that require grad. The proper way of doing things is to use `with torch.no_grad` or equivalently `NoGradGuard` in C++ to guard in-place operations.
The next step can then simply redefine `torch::Tensor` to be `at::Tensor`. This transition should be smooth, since all methods available on `Variable` are at this point available on `at::Tensor`.
For this PR I:
1. Modified the implementations of optimizers to not use `.data()`. This means the implementations are now different from PyTorch, which still uses the legacy method of using `.data`.
2. To properly verify (1), I added more fine-grained test cases to our optimizer tests, e.g. `SGD` with and without `weight_decay`, then with `nesterov` etc. Generally more tests = more happy!
3. Minor cleanup of the optimizer codebase
ebetica apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10490
Differential Revision: D9318229
Pulled By: goldsborough
fbshipit-source-id: fb386700f37840542bc5d323f308ea88fe5ea5c5
Summary:
This PR provides 4 fixes / features:
1. torch::nn::Cloneable inherits virtually from torch::nn::Module. We want to pass around a module with new functions, and the best way to do this is to do a diamond inheritance pattern, i.e.
```c++
struct MySuperModuleImpl : virtual public torch::nn::Module {
virtual void myFunction() = 0;
}
struct MySuperModule : public torch::nn::Cloneable<MySuperModule>, MySuperModuleImple {};
struct MyModule : public MySuperModule<MyModule> {
void myFunction() override;
};
```
This way, we can simply pass around MySuperModuleImpl around instead of torch::nn::Module.
2. Optimizer options are public now, since there's no way to decay the LR or modify it during training otherwise
3. Serialization functions creates autograd history and calls copy_! Bad!
4. Optimizers did not create buffers after add_parameters was called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9837
Reviewed By: goldsborough
Differential Revision: D9199746
Pulled By: ebetica
fbshipit-source-id: 76d6b22e589a42637b7cc0b5bcd3c6b6662fb299
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130
Update some include paths to make them internally consistent
Reviewed By: ezyang
Differential Revision: D9119906
fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
Summary:
ebetica made me aware that `nn::Module::clone()` always clones to the current device (usually CPU) instead of preserving the device of each parameter. This PR changes the signature of `clone` from
`shared_ptr<Module> clone()`
to
`shared_ptr<Module> clone(optional<Device> device = nullopt)`
with semantics of:
1. If a `device` is given, all parameters/buffers are moved to that device,
2. If no `device` is supplied (default), parameters/buffers retain their device.
ezyang apaszke ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9609
Differential Revision: D8957367
Pulled By: goldsborough
fbshipit-source-id: 0d409ae645ed2b8d97d6fc060240de2f3d4bc6c8
Summary:
I renamed the variable in the `Embedding` module from `weight` to `table` a few months ago, because it seemed like a more meaningful name. Turns out it's not such a good idea because it deviates from PyTorch, which unnecessarily breaks C++->Python translated code.
ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9720
Differential Revision: D8955647
Pulled By: goldsborough
fbshipit-source-id: 77228b07d2b733866e8cdecaa6d0686eef4cc3ea
Summary:
This PR adds the functional version of `DataParallel` (i.e. `data_parallel`) to the C++ frontend.
For this, I had to:
1. Add "differentiable" versions of scatter and gather, which perform their inverse operation in the backward pass, to C++. I've added them under `torch/csrc/autograd/functions/comm.{h,cpp}`. I had to move some utilities from `VariableType.cpp` into `torch/csrc/autograd/functions/utils.h`, and changed them a bit to fix the `const_cast`s for which there were `TODO`s,
2. Implement the `replicate`, `parallel_apply` and the combining `data_parallel` functions in C++.
`replicate` is implemented based on our existing `clone()` interface, along with the ability to set the current device via `at::OptionsGuard` (so nice).
`parallel_apply` is implemented using `at::parallel_for` (CC cpuhrsch) and [follows the code from PyTorch](https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/parallel_apply.py).
Added lots of tests for these things.
apaszke ezyang ebetica colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9234
Differential Revision: D8865182
Pulled By: goldsborough
fbshipit-source-id: 4f1fecf2b3f3bc1540c071dfb2d23dd45de433e4
Summary:
In our pimpl system, default constructing a module holder default constructs the contained module. This means `Linear linear;` is ill-formed, since `Linear` doesn't have a default constructor. Instead we require `Linear linear = nullptr;` to get the empty state of the `Linear`. This PR makes the error message for the ill-formed case nicer.
I had to change the forwarding constructors of most of our modules for this, but that's a minor adjustment.
E.g.
```
Linear linear;
In file included from /home/psag/pytorch/pytorch/torch/csrc/api/include/torch/nn/module.h:5:0,
from /home/psag/pytorch/pytorch/test/cpp/api/module.cpp:3:
/home/psag/pytorch/pytorch/torch/csrc/api/include/torch/nn/pimpl.h: In instantiation of ‘torch::nn::ModuleHolder<Contained>::ModuleHolder() [with Contained = torch::nn::LinearImpl]’:
/home/psag/pytorch/pytorch/torch/csrc/api/include/torch/nn/modules/dropout.h:45:1: required from here
/home/psag/pytorch/pytorch/torch/csrc/api/include/torch/nn/pimpl.h:46:5: error: static assertion failed: You are trying to default construct a module which has no default constructor. Use = nullptr to give it the empty state (like an empt
y std::shared_ptr).
static_assert(
```
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9565
Differential Revision: D8903666
Pulled By: goldsborough
fbshipit-source-id: 5e6b788921a27a44359db89afdc2b057facc5cec
Summary:
THCStream was recently moved to ATen by mruberry: https://github.com/pytorch/pytorch/pull/8997. This PR now introduces a guard class that replaces `AutoStream` from `torch/csrc/` and also uses this new stream interface.
I had to extend the `CUDAStream` interface with unchecked calls, so that we can reset the stream without throwing an exception in the guard's destructor.
colesbury apaszke ezyang
Fixes https://github.com/pytorch/pytorch/issues/7800
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9277
Differential Revision: D8865183
Pulled By: goldsborough
fbshipit-source-id: 67c9bc09629d92fa5660286b5eec08fde9108cd7
Summary:
ebetica asked for a way to add parameters to `Optimizer`s after they are created.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9472
Differential Revision: D8872176
Pulled By: goldsborough
fbshipit-source-id: 39a4032c519a6d3b458dd3596361b04afea10365
Summary:
I noticed that `Sequential::clone()` does not work. This is because `Sequential` does not use `reset()` which is normally where modules have to initialize and register its submodules. Further, this is because of the way `Sequential` allows its modules to be passed in the constructor, which doesn't work with `reset()` (since it does "late" initialization).
I've added some better error messages inside `Cloneable::clone()` which makes this kind of mistake clearer for other users, and tests for `Sequential::clone()`.
I also had to give `AnyModule` a deep `clone()` method.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9372
Differential Revision: D8865189
Pulled By: goldsborough
fbshipit-source-id: b81586e0d3157cd3c4265b19ac8dd87c5d8dcf94
Summary:
To allow our C++ customers to use our initialization methods as well, this PR moves some of the code from `torch.nn.init` to ATen, calls it from Python, and adds equivalent code to the C++ frontend.
Notes:
1. Happy to hear thoughts on whether it's ok to have e.g. `torch.nn.init.dirac_` *and* `torch.dirac_` (the former has a `no_grad` guard). We have this for `ones_` and stuff too, so I don't mind it.
2. I left the exception checking in Python because they throw `ValueError`s while ATen errors show as `RuntimeError`s. I imagine this would break users' error handling if someone were to have a `try`-`except` handler for `ValueError` (or maybe it's a far fetch)
EDIT: After discussions with zdevito, the PR now simply duplicates the code in C++ exclusively for the C++ API, and we leave the Python code as-is (to make it easier for people to read/modify).
ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9295
Differential Revision: D8813793
Pulled By: goldsborough
fbshipit-source-id: 4b969f3f75952c1be4e837e19e23b8098e5fbd4b
Summary:
In the C++ API, `Sequential` currently was not refcounted itself, but stored `shared_ptr<AnyModule>` to get the reference semantics. This is unfortunate because most modules in the API are accessed via `->`, e.g. `Linear l(1, 2); l->forward(...);`. `Sequential` was different in that it had value semantics itself, thus was accessed via `.`.
This PR makes `Sequential` store `AnyModule` (without extra indirection), and uses the same pImpl mechanism we use for all other modules to make `Sequential` have reference semantics itself. This makes it consistent with the rest of the library. It also removes one level of indirection inside of `Sequential`, which is cool.
One thing I had to change was that the `ModuleHolder` with which the whole pImpl thing is implemented previously did some tricks to make `Linear(3, 4)` actually construct `Linear(LinearOptions(3, 4))`. This doesn't work well with `Sequential` since it takes a variadic parameter pack. Instead, I made `ModuleHolder` forward all arguments to the underlying module, and then further pushed the trick to forward parameters to modules' options types into the actual Modules. This adds one constructor per Module in the library. This is not something user modules have to do (unless they want this nice forwarding themselves). It makes the code simpler overall.
ezyang ebetica apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9151
Reviewed By: ezyang
Differential Revision: D8809298
Pulled By: goldsborough
fbshipit-source-id: da68452c3de912fbc67af330ba93b5220de6909f
Summary:
Added a way to `dynamic_cast` an `nn::Module` and get a pointer to it. `nn::Module::is<T>` just checked if the return value of the `dynamic_cast` was nullptr, so I got rid of `is<T>` since it's equivalent to `as<T> != nullptr`(or just `as<T>` due to boolean conversion).
We're now at
```
if (auto* conv = module.as<nn::Conv2d>()) {
conv->weight.data().normal_(0.0, 0.02);
} else if (auto* bn = module.as<nn::BatchNorm>()) {
bn->weight.data().normal_(1.0, 0.02);
bn->bias.data().fill_(0);
}
```
ezyang apaszke ebetica
Closes https://github.com/pytorch/pytorch/pull/9149
Differential Revision: D8735954
Pulled By: goldsborough
fbshipit-source-id: e2b8f6f0cea16a621f8bc0807a33cc7651d25154