Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12180
I had to fix a lot of call sites, because a lot of places assume that
you can actually get a const vector&, and if the internal representation
of sizes in a tensor is NOT a vector, it's not possible to fulfill
this API contract.
Framework changes:
- I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to
sizes() now.
- De-templatized SetDims; now it is an explicit list of ArrayRef and
variadic overloads. This makes implicit conversions work again,
so I don't need to explicitly list the std::vector cases too.
- As a knock-on effect, this causes Reset() to accept at::IntList as well as
const std::vector<int64_t>&
- Edited variadic overloads of SetDims to all forward to the underlying
arbitrary-dim implementation, reducing code duplication. (It's probably
marginally less efficient in the new world.)
- Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList
- Make MKLTensor accept ArrayRef along with vector in constructor and
Reset (unfortunately, no implicit conversions here, since it's templated on
index type.)
- There are a few other places, like cudnn, where I changed functions
that previously took const std::vector<int64_t>& to take at::IntList
instead.
Classification of call site changes:
- 'const std::vector<int64_t>& x_dims = x.dims()' ==>
'at::IntList x_dims = x.dims()'
- 'std::vector<int64_t> x_dims = x.dims()' ==>
'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!)
Usually this is because we're about to mutably modify the vector
to compute some new dimension. However, it also very commonly occurs in the
form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators.
- Instead of constructing std::vector<int64_t>{blah, blah}, construct an
at::IntList directly
ArrayRef changes:
- cbegin()/cend() iterators, they operate the same aas begin()/end() because
everything on ArrayRef is const.
- Moved operator<< into ArrayRef.h, so that it's always available when
working with ArrayRef. I also templated it, so it now works on an
ArrayRef of any type.
- Add operator== overload for ArrayRef, and also add variants to permit
comparison of ArrayRef with std::vector, a very common operation.
(The non-templated version of operator== can get these automatically
via implicit conversion, but with templates C++ refuses to do
any explicit conversions.)
I'm planning to audit all dims() call sites to make sure they don't
expect 'auto x = t.dims()' to give you an x whose lifetime can validly
outlive the tensor.
I opted not to do a dims() to sizes() rename, because dims() also matches
the protobufs accessor. Bad news!
Reviewed By: jerryzh168
Differential Revision: D10111759
fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
Summary:
All usages of the `ndarray` construct have now been guarded with `USE_NUMPY`. This eliminates the requirement of NumPy while building PyTorch from source.
Fixes#11757
Reviewed By: Yangqing
Differential Revision: D10031862
Pulled By: SsnL
fbshipit-source-id: 32d84fd770a7714d544e2ca1895a3d7c75b3d712
Summary:
If block is missing control inputs when do caffe2 net execution, this PR add them back and remove the un-SSA semantics
jamesr66a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12224
Differential Revision: D10135408
Pulled By: wanchaol
fbshipit-source-id: 746c870bde54ed4ca627167361db1b3f36cd235c
Summary:
Original commit changeset: f5614a5d2607
D9986213 is causing Multifeed Aggregator a [huge performance different](https://our.intern.facebook.com/intern/ads/analyze_canary/412951953278781781/) and is blocking aggregator push since last Friday night: https://fburl.com/feedtools/b6izvwjz
We need to land this revert ASAP to unblock aggregator push.
Reviewed By: orionr
Differential Revision: D10123245
fbshipit-source-id: d83da8e00a1250f5d09811a0a587c127e377aab2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11349
Special case BatchGather and BatchGatherGradient for block_size=1. This makes BatchGather 3-4X faster and BatchGatherGradient 10X for this case.
Reviewed By: jspark1105, ilia-cher
Differential Revision: D7218043
fbshipit-source-id: ea12042239a8adc92b9efcbd0b66e354fb43f4c7
Summary:
the speed-up of a single operation is up to 6X on BDW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11686
Reviewed By: yinghai
Differential Revision: D9828129
Pulled By: wesolwsk
fbshipit-source-id: 7dbacea90609e18438f6fe1229c641937d0696c8
Summary:
This does 6 things:
- add c10/util/Registry.h as the unified registry util
- cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10
Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077
Reviewed By: ezyang
Differential Revision: D10050771
Pulled By: Yangqing
fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12021
TestPilot runs stress tests in parallel. These fail for serialized tests because extracting (and subsequent deletion) of binary data during the process isn't threadsafe. Extract zips into tempfile to avoid this problem.
Also remove some accidentally checked in zips of a test that we didn't end up including for now.
Reviewed By: houseroad
Differential Revision: D10013682
fbshipit-source-id: 6e13b850b38dee4106d3c10a9372747d17b67c5a
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.
This is a codemod by mechanically doing the following change:
CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019
Reviewed By: ezyang, teng-li
Differential Revision: D10016276
Pulled By: Yangqing
fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043
Re-trying D9979976, this time with all call sites fixed.
D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.
Reviewed By: ezyang
Differential Revision: D10026392
fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12020
- make it less verbose to create random blobs in python unit test by adding some test helper methods
- move str_compare test helper method to test_util.py
Reviewed By: ZolotukhinM
Differential Revision: D10003637
fbshipit-source-id: cb79d2ad508341f750a1bb8f564e87d055c65652
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223
Differential Revision:
D10026321
Ninja: stable broken
fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923
This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.
This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.
Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "
It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.
Reviewed By: ezyang
Differential Revision: D9979976
fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11688
As a first step to remove static context(merge with allocator), we'll create a
global registries for context constructors, and remove CreateContext function from tensor.
Reviewed By: ezyang, dzhulgakov
Differential Revision: D9779821
fbshipit-source-id: 8b239ea50af7a0556fde2382f58f79194f0e3dc1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11817
Blob::Serialize() and Blob::Deserialize() are now free functions SerializeBlob(), DeserializeBlob() instead.
This takes away access to Blob internals from them and makes future refactorings easier.
Reviewed By: ezyang
Differential Revision: D9882726
fbshipit-source-id: 3251ebd4b53fc12f5e6924a6e4a8db3846ab3729
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11710
Added a test to check that output and gradient values are correctly
calculated wehn combine_spatial_bn is true on data parallel model
Reviewed By: enosair
Differential Revision: D9833660
fbshipit-source-id: 14d29fbebefa9dc303ffae06f9899ea4bde23025
Summary:
Followup to [the serialized test framework](https://github.com/pytorch/pytorch/pull/10594)
Round 1 for refactoring tests, starting alphabetically. I added some functionality, so I wanted to send out some of these initial changes sooner.
I'm skipping all tests that don't explicitly call assertReferenceChecks. Some tests directly call np.allclose, and others are simply TestCase (rather than HypothesisTestCase).
1. Start alphabetically producing serialized outputs for test functions, annotating those we want to include with `serialized_test_util.given`. So far I've only added one test per operator, but this already does seem to add quite a few tests.
2. Add functionality to allow us to generate outputs using pytest by adding pytest argument options. This allows us to skip adding a `__main__` function to quite a few tests.
3. Catch any exceptions generating the gradient operator and skip serializing/reading it, since certain operators don't have gradients.
4. Add functionality to better handle jagged array inputs, which numpy doesn't handle very well. We simply explicitly do the conversion to dtype=object.
5. Make only one file per test function, rather than 4, to reduce the number of files in the github repo.
I also noticed that there is some hypothesis handling that makes `serialized_test_util.given` not compatible with adding more hypothesis decorators on top. For example, there are tests that do
```
settings(...)
given(...)
def test_my_stuff(...)
```
But there is a hypothesis handler that explicitly checks that `given` is called below `settings`, so we cannot refactor this to `serialized_test_util.given`. I've just avoided decorating these kinds of tests for now, I hope that's alright.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11350
Reviewed By: houseroad
Differential Revision: D9693857
Pulled By: ajyu
fbshipit-source-id: a9b4279afbe51c90cf2025c5ac6b2db2111f4af7
Summary: Cleaning up converter.cc and allowing networks that have "pass through" inputs (that are also outputs but aren't actually consumed by the network)
Reviewed By: duc0
Differential Revision: D9759435
fbshipit-source-id: 1ddfcc60a1b865a06682e4022230dfecc4b89ec3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11748
For avx512, we need to align at a multiple of 64B not 32B
Regardless of avx512, it's in general a good idea to be cache line aligned.
Reviewed By: ilia-cher
Differential Revision: D9845056
fbshipit-source-id: b1d3ed67749c0c1a64acd5cc230a1279e8023512
Summary:
Requires https://github.com/onnx/onnx/pull/1377
This PR makes it so that slices with dynamic boundary values can be exported from pytorch and run in caffe2 via ONNX.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11255
Differential Revision: D9790216
Pulled By: jamesr66a
fbshipit-source-id: 6adfcddc5788df4d34d7ca98341077140402a3e2
Summary:
* Many op in lstm part of the model don't have implementation in ideep/mkl, and it doesn't make sense to copy back and forth for the few available ops because majority of RNN will be on CPU
* Thus the strategy is to enable mkl only for the resnet18 part of the model, then switch to default cpu engine for the lstm part
* The net may contain some external_inputs falsely added during ONNX->Caffe2. Canary in service shows their existence could leads to service crash (presumably due to these blob somehow get shared between threads). They're now manually removed which seem to be enough to avoid the crash.
Reviewed By: viswanathgs
Differential Revision: D8888763
fbshipit-source-id: da7761bcb7d876ff7bbb6640ae4b24712c0b1de6