Commit Graph

8 Commits

Author SHA1 Message Date
Mike Guo
6ecc1a4c4f Make pytorch clang-tidy clean (#60649)
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.

I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop

# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
  -j \
  -s \
  -k \
  -v \
  --paths torch/csrc/ \
  -g"-torch/csrc/jit/passes/onnx/helper.cpp" \
  -g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
  -g"-torch/csrc/jit/serialization/onnx.cpp" \
  -g"-torch/csrc/jit/serialization/export.cpp" \
  -g"-torch/csrc/jit/serialization/import.cpp" \
  -g"-torch/csrc/jit/serialization/import_legacy.cpp" \
  -g"-torch/csrc/onnx/init.cpp" \
  -g"-torch/csrc/cuda/nccl.*" \
  -g"-torch/csrc/cuda/python_nccl.cpp" \
  -g"-torch/csrc/autograd/FunctionsManual.cpp" \
  -g"-torch/csrc/generic/*.cpp" \
  -g"-torch/csrc/jit/codegen/cuda/runtime/*" \
  -g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
  -g"-torch/csrc/deploy/interpreter/interpreter.h" \
  -g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
  -g"-torch/csrc/deploy/interpreter/test_main.cpp"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649

Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.

Reviewed By: walterddr, janeyx99

Differential Revision: D29504258

Pulled By: 1ntEgr8

fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
2021-07-01 12:21:07 -07:00
Gaoxiang Liu
735f8cc6c2 [DI] Allow explicit taskLauncher for torchscript interpreter (#46865)
Summary:
By default, TorchScript execution is single threaded and uses the caller's thread pool. For the use case of distributed inference, we hope there is a way to customize the behavior where the  interpreter in torch script can be executed in other places. This diff allows an explicit taskLauncher for torchscript interpreter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46865

Test Plan:
unit test is passed.

fbshipit-source-id: 1d7b003926c0d1f8facc53206efb960cff8897ac

Fixes #{issue number}

Reviewed By: houseroad

Differential Revision: D24616102

Pulled By: garroud

fbshipit-source-id: 79202b62f92d0b0baf72e4bf7aa3f05e0da91d59
2020-11-04 17:07:55 -08:00
Ansha Yu
aac36a89ff [model transform] tuple to arglist jit pass (#36093)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36093

Unwrap any tuples (including NamedTuples) in the module forward
function input list to be arglist.
1. Supports multiple tuple inputs, and traces their use through CallMethods and
TupleIndex
2. Does not unwrap inner use of other tuples that did not show up in the
original toplevel graph inputs

We work from the ScriptModule level instead of the Graph level because:
1. If the ScriptModule was previously called with the original set of inputs, the GraphExecutor caches the ExecutionPlan (specifically, ArgumentSpecCreator is derived from the Graph and type check the inputs passed in)
2. Since we are changing this graph's inputs, we clone the module and clear the GraphExecutor.

Since we work from ScriptModule level, we cannot take advantage of jit level syntactic sugar like run_pass(), so I jit exposed this as a cpp extension. Let me know if there are other ideas about this.

Test Plan:
buck test caffe2/torch/fb/model_transform:signature_translation_test
Todo: Verify use in bento

Untranslated graph:
```
> graph(%self : __torch__.test_jit.SparseNNWrapper,
>       %inputs.1 : NamedTuple(dense : Tensor, sparse : Dict(int, Tensor))):
>   %2 : __torch__.test_jit.SparseNN = prim::GetAttr[name="main_module"](%self)
>   %4 : Tensor = prim::CallMethod[name="forward"](%2, %inputs.1) # /data/users/ansha/fbsource/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/test_jit.py:12141:23
>   return (%4)
```

Translated graph:
```
> graph(%self : __torch__.test_jit.___torch_mangle_1.SparseNNWrapper,
>       %inputs.1_0 : Tensor,
>       %inputs.1_1 : Dict(int, Tensor)):
>   %2 : __torch__.test_jit.___torch_mangle_2.SparseNN = prim::GetAttr[name="main_module"](%self)
>   %3 : Tensor = prim::CallMethod[name="forward"](%2, %inputs.1_0, %inputs.1_1) # /data/users/ansha/fbsource/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/test_jit.py:12141:23
>   return (%3)
```

Reviewed By: houseroad

Differential Revision: D20313673

fbshipit-source-id: fddd07c9537dc8b6f480a14d697bea10ecc74470
2020-04-09 22:05:43 -07:00
Jeremy Lilley
8d64a3848c [jit] In RPC Server, handle TorchScript continuations asynchronously (#34109)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34109

This change adds glue to GraphExecutor to give the RPC server
access to the future-based Interpreter::runAsync() api.

Previously, if a server encounted a TorchScript continuation-based block
with fork/wait, it would simply block in the server thread until the handler
completed, since it uses the synchronous Interpreter::run() api.

With the ivalue::Future returned by the Interpreter, we can run the
TorchScript code asynchronously from c++ simply by connecting its
callback to the server callback.

We add test cases to cover the new logic, both rpc_async and remote.

ghstack-source-id: 101245438

Test Plan: buck test mode/dev-nosan caffe2/test/distributed/rpc/...

Differential Revision: D20194321

fbshipit-source-id: 16785ec5d9ed0b16cb1ffab0a9771a77de30fcb0
2020-03-31 17:21:46 -07:00
Ilia Cherniavskii
800d5617c0 Recording of TorchScript functions (#34710)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34710

Extending RecordFunction API to support new recording scopes (such as TorchScript functions), as well as giving more flexibility to set sampling rate.

Test Plan: unit test (test_misc.cpp/testRecordFunction)

Reviewed By: gdankel, dzhulgakov

Differential Revision: D20158523

fbshipit-source-id: a9e0819d21cc06f4952d92d43246587c36137582
2020-03-31 00:33:23 -07:00
Hong Xu
027d7f7ba5 Delete AT_WARN and replace all AT_WARN with TORCH_WARN (#34623)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34623

The bandaid of "AT_WARN" keeps introducing new warnings. Let's get rid
of it entirely.

Close #34502

Test Plan: Imported from OSS

Differential Revision: D20420112

Pulled By: albanD

fbshipit-source-id: 7160c113cb4deb2d2f50a375356f423fe5e86f50
2020-03-13 12:27:22 -07:00
James Reed
45a504dd2d [JIT] Introduce BuiltinOpFunction and integrate into torchbind (#34098)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34098

* #33900 [JIT] Move stuff out of class_type.cpp

Test Plan: Imported from OSS

Differential Revision: D20229166

Pulled By: jamesr66a

fbshipit-source-id: d658a63a5d6e372e675f35b8456adc8de82b49f3
2020-03-07 10:03:56 -08:00
James Reed
60e8615a6d [JIT] Virtualize Function (#33921)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33921

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.intern.facebook.com/intern/diff/D20153092/)!

Test Plan: Imported from OSS

Differential Revision: D20177227

Pulled By: jamesr66a

fbshipit-source-id: 87f3e484c4f873d60f76f50f6789c1b4a73bdfde
2020-03-07 10:03:50 -08:00