Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37174
ghstack-source-id: 106938112
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21210002
fbshipit-source-id: d6a55ab6420c05a92873a569221b613149aa0daa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38136
This was a bit trickier than I expected, because modules have
to be importable to be pickleable, but adding a module to another
module in the C API isn't really the right way to make it importable.
We hack around it by manually adding the module to sys.modules.
Thanks Richard Zou for an extremely useful prior attempt which helped
me make this work.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21487840
Pulled By: ezyang
fbshipit-source-id: 368da9b9c50e5de4d7dd265e6f9f189a882d75c1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36232
The purpose of this PR is to replace `at::Generator generator = nullptr` with `c10::optional<at::Generator> = c10::nullopt` all over the code
* #36230 Replace std::shared_ptr with c10::intrusive_ptr in at::Generator
Test Plan: Imported from OSS
Differential Revision: D20943603
Pulled By: pbelevich
fbshipit-source-id: 65d335990f01fcc706867d5344e73793fad68ae6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35235
For dynamic quantization in graph mode, we need an operator that returns the qparams of the tensor
similar to the linear_dynamic quantized op
Test Plan:
python test/test_quantized_tensor.py TestQuantizedTensor.test_choose_qparams
Imported from OSS
Differential Revision: D20608793
fbshipit-source-id: b923b2620421b32d05f4097db0d6153d53198221
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34468
This PR prepares `at::Generator` for pybind11's `type_caster<at::Generator>` which is required to implement custom RNG in python. The following changes are done:
1. `at::Generator` was moved to `c10::GeneratorImpl` (similar to `c10::TensorImpl`)
2. `at::Generator` was recreated as a holder of `std::shared_ptr<c10::GeneratorImpl>` (similar to `at::Tensor` that holds `c10::intrusive_ptr<c10::TensorImpl>`)
3. Most of `at::Generator*` usages were replaced with `at::Generator`
TBD: replacing `Generator generator = nullptr` with `{}` requires JIT changes(adding Generator to IValue?)
Differential Revision: D20549420
Pulled By: pbelevich
fbshipit-source-id: 4c92a40eab8f033b359bb6c93f4cd84b07ee8d4e
Summary:
Per title.
Currently torch.full will always (attempt to) produce a float tensor. This is inconsistent with NumPy in (at least) two cases:
- When integral fill values (including bool) are given
- When complex fill values are given
For example:
```
np.full((1, 2), 1).dtype
: dtype('int64')
np.full((1, 2), (1 + 1j)).dtype
: dtype('complex128')
```
Whereas in PyTorch
```
torch.full((1, 2), 1).dtype
: torch.float32
torch.full((1, 2), (1 + 1j)).dtype
: RuntimeError: value cannot be converted to type float without overflow: (1,1)
```
This PR begins the process of deprecating our current behavior of returning float tensors (by default) when given integer fill values by warning the user that integer fill values will require explicitly specifying the dtype or out kwargs in 1.6, and in 1.7 the behavior will change to return a LongTensor by default (BoolTensor for bool values). The intermediate 1.6 release is to prevent changing the behavior silently and unexpectedly.
The PR also implements inference for complex types. So that with it:
```
torch.full((1, 2), (1 + 1j)).dtype
: torch.complex64
```
The complex type inference returns a ComplexFloat tensor when given a complex fill value (and no dtype or out kwarg is specified), unless the default dtype is Double, in which case a ComplexDouble tensor is returned.
A test for these behaviors is added to test_torch.py.
Implementation note:
This PR required customizing full's dispatch because currently in eager codegen the TensorOptions object passed to functions improperly sets has_dtype() to true, even if the user did not explicitly provide a dtype. torch.arange already worked around this issue with its own custom implementation. The JIT, however, does pass a properly constructed TensorOptions object.
Future Work:
This PR does not extend torch.full's complex type inference to ONNX. This seems unlikely to come up and will be a clear error if it does. When integer type inference is added to torch.full, however, then porting the behavior to ONNX may be warranted. torch.arange ported its complex type promotion logic to ONNX, for example.
Additionally, this PR mostly leaves existing call sites in PyTorch that would trigger this warning intact. This is to be more minimal (since the PR is BC breaking). I will submit a separate PR fixing PyTorch's call sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34709
Differential Revision: D20509387
Pulled By: mruberry
fbshipit-source-id: 129593ba06a1662032bbbf8056975eaa59baf933
Summary:
This adds `__torch_function__` support for all functions in `torch.functional` and `torch.nn.functional`.
The changes to C++ code and codegen scripts are to facilitate adding `__torch_function__` support for the native functions in `torch._C._nn`. Note that I moved the `handle_torch_function` C++ function to a header that both `python_torch_functions.cpp` and `python_nn_functions.cpp` include. The changes to `python_nn_functions.cpp` mirror the changes I made to `python_torch_functions.cpp` when `__torch_function__` support was first added in https://github.com/pytorch/pytorch/issues/27064. Due to the somewhat different way the `torch._C` and `torch._C._nn` namespaces are initialized I needed to create a new static reference to the `torch._C._nn` namespace (`THPNNVariableFunctions`). I'm not sure if that is the best way to do this. In principle I could import these namespaces in each kernel and avoid the global variable but that would have a runtime cost.
I added `__torch_function__` support to the Python functions in `torch.nn.functional` following the approach in https://github.com/pytorch/pytorch/issues/32194.
I re-enabled the test that checks if all functions in the `torch` namespace are explicitly tested for `__torch_function__` support. I also generalized the check to work for `torch.functional` and `torch.nn.functional` as well. This test was explicitly disabled in https://github.com/pytorch/pytorch/issues/30730 and I'm happy to disable it again if you think that's appropriate. I figured now was as good a time as any to try to re-enable it.
Finally I adjusted the existing torch API tests to suppress deprecation warnings and add keyword arguments used by some of the code in `torch.nn.functional` that were missed when I originally added the tests in https://github.com/pytorch/pytorch/issues/27064.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32799
Differential Revision: D19956809
Pulled By: ezyang
fbshipit-source-id: 40d34e0109cc4b9f3ef62f409d2d35a1d84e3d22
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33305
The current TensorOptions code is written to exactly extract out
TensorOptions based on exact struct match, including default arguments.
That meant that tril_indices/triu_indices which had a different
default argument didn't match, and thus needed a special case.
I resolve this special case by instead replacing the explicit long
default argument with a None default argument, and then adjusting
the actual implementations to select the correct dtype when none
was specified. I think the general rule I'm following here is that
it is always acceptable to replace an explicit default argument,
with a None argument (assuming the backend will compute it appropriately);
the documentation gets modestly worse, but everything that was
previously expressible continues to be expressible. Maybe later
we should switch the default argument back to long, but for now
the simplification in code is worth it.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D19975411
Pulled By: ezyang
fbshipit-source-id: 996598759bed9e8d54fe61e19354ad038ed0e852
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32907
All op-specific information used in this logic was available to the
parser itself, so the check can be done in that context, no codegen
needed.
No change in the warning behavior itself, mod minor formatting tweak -
passes existing tests. Saves like ~275K binary size on mac:
```
-rwxr-xr-x 1 bhosmer 1876110778 16502064 Feb 1 00:43 torch/lib/libtorch_python.dylib
-rwxr-xr-x 1 bhosmer 1876110778 16247888 Feb 1 00:44 torch/lib/libtorch_python.dylib
```
[codegen diff](https://github.com/bhosmer/scratch/compare/deprecation_warning_before...deprecation_warning_after)
More important than the size savings is the minimization of codegen. Ideally the generated artifact should express distinctive per-op properties in as minimal a form as practically possible - e.g. here instead of generating check-and-warn behavior into every binding, we generate only the data that triggers the behavior in the parser. (And actually we were generating it already.)
Test Plan: Imported from OSS
Differential Revision: D19679928
Pulled By: bhosmer
fbshipit-source-id: cf0140573118430720c6b797c762fe5be98acd86
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29986
Previously in addition to generating a python binding for each op,
we would generate an almost-trivial helper for each overload.
This PR eliminates the helpers, simplifying codegen logic a bit and
reducing the source-level indirection by a step.
Perf should be unchanged.
codegen diff: 1f2f07fb60
Note: in the interests of keeping the diff contained, there's only
some light cleanup here beyond what's necessary for the codegen changes.
Plan is to do some more substantial refactoring in followup PRs that
leave generated code unchanged.
Test Plan: Imported from OSS
Differential Revision: D18567980
Pulled By: bhosmer
fbshipit-source-id: eb9a81babb4489abd470842757af45580d4c9906
Summary:
Continuation of https://github.com/pytorch/pytorch/issues/31514, fixes https://github.com/pytorch/pytorch/issues/28430
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32009
Test Plan:
I verified that the deprecation warnings only occur once on a relevant workflow. Built with:
```
buck build mode/opt //vision/fair/detectron2/tools:train_net
```
Ran with:
```
DETECTRON2_ENV_MODULE=detectron2.fb.env ~/local/train_net.par --config-file configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml --num-gpus 1 SOLVER.IMS_PER_BATCH 2
```
Inspected log:
```
[01/14 07:28:13 d2.engine.train_loop]: Starting training from iteration 0
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1299: UserWarning: This overload of add is deprecated:
add(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add(Tensor other, Number alpha)
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1334: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, Number alpha)
[01/14 07:28:25 d2.utils.events]: eta: 0:00:10 iter: 19 total_loss: 1.699 loss_cls: 1.185 loss_box_reg: 0.501 time: 0.5020 data_time: 0.0224 lr: 0.000100 max_mem: 3722M
[01/14 07:28:35 fvcore.common.checkpoint]: Saving checkpoint to ./output/model_final.pth
```
Differential Revision: D19373523
Pulled By: ezyang
fbshipit-source-id: 75756de129645501f43ecc4e3bf8cc0f78c40b90
Summary:
Fixes https://github.com/pytorch/pytorch/issues/28430
The unpythonic signatures for functions such as `torch.addcdiv` are already seperated in [`deprecated.yaml`] and the signatures marked as deprecated in `PythonArgParser`. However, nothing was done with this information previously. So, this now emits a warning when the deprecated signatures are used.
One minor complication is that if all arguments are passed as keyword args then there is nothing to differentiate the deprecated overload. This can lead to false warnings being emitted. So, I've also modified `PythonArgParser` to prefer non-deprecated signatures.
[`deprecated.yaml`]: https://github.com/pytorch/pytorch/blob/master/tools/autograd/deprecated.yaml
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31514
Differential Revision: D19298735
Pulled By: ezyang
fbshipit-source-id: 03cb78af17658eaab9d577cd2497c6f413f07647
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517
This is going to be used by upsample (which currently uses magic values to represent optionals).
For now, we just introduce a fake function for testing (torch._test_optional_float(x)).
Test Plan: Imported from OSS
Differential Revision: D19198721
Pulled By: gchanan
fbshipit-source-id: 0a1382fde0927c5d277d02d62bfb31fb574b8c74
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.
I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730
Differential Revision: D18813270
Pulled By: ezyang
fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
This reverts the 9a9bb448ee
Fixing the broken case which reverts the previous commit.
details about fix:
modified: aten/src/ATen/native/Convolution.cpp
called contiguous on 3D input tensor. This avoids the code path to accidentally
recognize the input as channel_last stride, due to unsqueezing of permuted 3d
tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29361
Differential Revision: D18371964
Pulled By: VitalyFedyunin
fbshipit-source-id: a5985f4687b37e183649fa35b8ccdb50368ebfdf
Summary:
Added nhwc support for:
1. cudnn_batch_norm & cudnn_batch_norm_backward
2. cudnn_convolution_forward & cudnn_convolution_backward
3. cudnn_convolution_transpose & cudnn_convolution_transpose_backward
patching suggest_memory_format for convolution
suggest_memory_format has ambiguous meaning for two cases:
1. tensor with NCHW where C = 1.
we could use stride of C as a hint to tell the intended memory format.
2. tensor with NCHW where H == W == 1.
there's no way to identify the intended memory format from strides.
Currently we fallback to NCHW whenever we see contiguous tensor. Hence avoiding
ambiguity for some of the special cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23861
Differential Revision: D18263434
Pulled By: VitalyFedyunin
fbshipit-source-id: dd9f69576ec12fec879cd87a3d446931371360d9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26243
This is an attempt to fix _empty_per_channel_affine_quantized to be more sane. It's a factory function that nevertheless receives a Tensor argument and it throws the codegen off course.
Before people did a hacky workaround of appending _like to the function name to trick codegen, it also required non-natural argument order.
This PR explicitly allows to override the 'category' of the function to make codegen do the right thing. Now name and the argument order (in C++) make more sense.
Test Plan: Imported from OSS
Differential Revision: D17443221
Pulled By: dzhulgakov
fbshipit-source-id: c98c1c74473d8cbf637f511d26ceb949d8ae2a1a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26240
In particular adds support for empty/empty_like which is needed for memory layouts to work.
Test Plan: Imported from OSS
Differential Revision: D17443220
Pulled By: dzhulgakov
fbshipit-source-id: 9c9e25981999c0edaf40be104a5741e9c62a1333
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25475
I got sucked into this rabbit hole when I was trying to understand
what I should do with TensorTypeId occurrences in
torch/csrc/utils/tensor_new.cpp. I eventually concluded that all of my problems
were because Tensor.new_empty was hand implemented and not actually a native
function. So I made it a native function.
There are a bunch of other new_* functions which should get this
treatment, but I'm sending out this PR just to show how it can
be done.
The general recipe:
1. Implement a concept of TensorOptions merging (TensorOptions::merge_in).
This represents the notion of taking a tensor, but "overriding" some
of its values with specific overrides. One subtlety here is how
devices get merged; see the comments for what our existing behavior is,
and how I preserve it.
2. Implement new_empty as a native function, using options merging.
3. Add another special case to Python binding generation to treat new_*
similar to *_like (i.e., handle TensorOptions correctly). The logic
here is probably wrong, actually; we should codegen TensorOptions
correctly no matter what happens, but new_empty follows the same
pattern as empty_like so I opted not to touch this code too much.
4. Delete the now defunct manual binding code.
5. Delete manual type annotations that are no longer necessary since
we're going through native.
I didn't handle memory format correctly here. I don't know if this function
should accept memory format; prior memory format patches didn't add support
for memory format to new_like. If we had put memory format in TensorOptions
this wouldn't have been a question.
ghstack-source-id: 89294185
Test Plan: sandcastle & ossci
Differential Revision: D17133000
fbshipit-source-id: 00f4e98bd5174f6fd54e8aba2910ea91824771d9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24184
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D16764168
Pulled By: ezyang
fbshipit-source-id: cc252a860fd7e4b7fb2b95c5d9fcdbf6935ffeb6
Summary:
Changelog:
- Port SVD TH implementation to ATen/native/BatchLinearAlgebra.cpp
- Port SVD THC implementation to ATen/native/cuda/BatchLinearAlgebra.cu
- Allow batches of matrices as arguments to `torch.svd`
- Remove existing implementations in TH and THC
- Update doc string
- Update derivatives to support batching
- Modify nuclear norm implementation to use at::svd instead of _batch_svd
- Remove _batch_svd as it is redundant
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21588
Test Plan:
- Add new test suite for SVD in test_torch.py with port to test_cuda.py
- Add tests in common_methods_invocations.py for derivative testing
Differential Revision: D16266115
Pulled By: nairbv
fbshipit-source-id: e89bb0dbd8f2d58bd758b7830d2389c477aa61fb
Summary:
re-apply changes reverted in:
https://github.com/pytorch/pytorch/pull/22412
Also change log_softmax to take positional arguments. Long-term we do want the kwarg-only interface, but seems to currently be incompatible with jit serialization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22456
Differential Revision: D16097159
Pulled By: nairbv
fbshipit-source-id: 8cb73e9ca18fc66b35b873cf4a574b167a578b3d
Summary:
Changelog:
- Port `symeig` from TH/THC to ATen
- Enable batching of matrix inputs for `symeig`
- Modify derivative computation based on batching
- Update docs to reflect the change
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21858
Test Plan: - Added additional tests in `test_torch.py` (with a port to `test_cuda.py`) and `common_methods_invocations.py` to test if both the port and batching work.
Differential Revision: D15981789
Pulled By: soumith
fbshipit-source-id: ab9af8361f8608db42318aabc8421bd99a1ca7ae
Summary:
This change is backwards incompatible in *C++ only* on mean(), sum(), and prod() interfaces that accepted either of:
```
Tensor sum(IntArrayRef dim, bool keepdim=false) const;
Tensor sum(IntArrayRef dim, ScalarType dtype) const;
```
but now to specify both the dim and dtype will require the keepdim parameter:
```
Tensor sum(IntArrayRef dim, bool keepdim=false, c10::optional<ScalarType> dtype=c10::nullopt) const;
```
[xla ci]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21088
Reviewed By: ailzhang
Differential Revision: D15944971
Pulled By: nairbv
fbshipit-source-id: 53473c370813d9470b190aa82764d0aea767ed74
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21709
Change the return type from Scalar to double/int64_t so we don't need to do conversion when we call other quantize related aten functions
Differential Revision: D15793003
fbshipit-source-id: 510936c69fa17a4d67340a31ebb03415647feb04
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21852
To enable change of q_scale and q_zero_point in `copy_`
Differential Revision: D15793427
fbshipit-source-id: a7040b5b956d161fd6af6176287f4a4aa877c9be
Summary:
Something flaky is going on with `test_inplace_view_saved_output` on Windows.
With my PR #20598 applied, the test fails, even though there is no obvious reason it should be related, so the PR was reverted.
Based on commenting out various parts of my change and re-building, I think the problem is with the name -- renaming everything from `T` to `asdf` seems to make the test stop failing. I can't be sure that this is actually the case though, since I could just be seeing patterns in non-deterministic build output...
I spoke with colesbury offline and we agreed that it is okay to just disable this test on Windows for now and not block landing the main change. He will look into why it is failing.
**Test Plan:** I will wait to make sure the Windows CI suite passes before landing this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21175
Differential Revision: D15566970
Pulled By: umanwizard
fbshipit-source-id: edf223375d41faaab0a3a14dca50841f08030da3
Summary:
This PR covers two important points with respect to the QR decomposition:
- batching of input matrices (#7500)
- adding `some` as an option in `torch.qr` akin to NumPy's `mode` option (#10538)
Changelog:
- Enable batching for inputs to `torch.qr`
- Move QR decomposition implementation to ATen (CPU and CUDA)
- Remove existing implementations in TH/THC
- Add a `some` option to `torch.qr` that will enable users to switch between complete and reduced decomposition
- Modify doc strings
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20689
Differential Revision: D15529230
Pulled By: soumith
fbshipit-source-id: 16af82b1d2db8a3a758fa8a5f798d83f5f950efb
Summary:
in functional interfaces we do boolean dispatch, but all to max_pool\*d_with_indices. This change it to emit max_pool\*d op instead when it's not necessary to expose with_indices ops to different backends (for jit).
It also bind max_pool\*d to the torch namespace, which is the same behavior with avg_pool\*d
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19449
Differential Revision: D15016839
Pulled By: wanchaol
fbshipit-source-id: f77cd5f0bcd6d8534c1296d89b061023a8288a2c
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.
Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```
Part of the bigger: `Remove Storage` plan.
Now compatible with both torch scripts:
` _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
` _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`
Same checked for all similar functions `rand_like`, `empty_like` and others
It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952
Differential Revision: D14801792
Pulled By: VitalyFedyunin
fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18230
Implementing minimum qtensor API to unblock other workstreams in quantization
Changes:
- Added Quantizer which represents different quantization schemes
- Added qint8 as a data type for QTensor
- Added a new ScalarType QInt8
- Added QTensorImpl for QTensor
- Added following user facing APIs
- quantize_linear(scale, zero_point)
- dequantize()
- q_scale()
- q_zero_point()
Reviewed By: dzhulgakov
Differential Revision: D14524641
fbshipit-source-id: c1c0ae0978fb500d47cdb23fb15b747773429e6c
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.
Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```
Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455
Reviewed By: ezyang
Differential Revision: D14672084
Pulled By: VitalyFedyunin
fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
Summary:
Changelog:
- Renames `btrifact` and `btrifact_with_info` to `lu`to remain consistent with other factorization methods (`qr` and `svd`).
- Now, we will only have one function and methods named `lu`, which performs `lu` decomposition. This function takes a get_infos kwarg, which when set to True includes a infos tensor in the tuple.
- Rename all tests, fix callsites
- Create a tentative alias for `lu` under the name `btrifact` and `btrifact_with_info`, and add a deprecation warning to not promote usage.
- Add the single batch version for `lu` so that users don't have to unsqueeze and squeeze for a single square matrix (see changes in determinant computation in `LinearAlgebra.cpp`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18435
Differential Revision: D14680352
Pulled By: soumith
fbshipit-source-id: af58dfc11fa53d9e8e0318c720beaf5502978cd8
Summary:
Changelog:
- Renames `trtrs` to `triangular_solve` to remain consistent with `cholesky_solve` and `solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `triangular_solve` under the name `trtrs`, and add a deprecation warning to not promote usage.
- Move `isnan` to _torch_docs.py
- Remove unnecessary imports
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18213
Differential Revision: D14566902
Pulled By: ezyang
fbshipit-source-id: 544f57c29477df391bacd5de700bed1add456d3f
Summary:
Why do we need this workaround? `PythonArgParser` handles these two cases well.
The discussion started at https://github.com/pytorch/pytorch/pull/6201#issuecomment-378724406. The conclusion at that time by goldsborough was:
> Because we wanted to allow `dim=None` in Python and route to a different function. Essentially the problem was wanting to wrap the C++ function in Python. AFAIK there is no way of translating `dim=None` behavior into C++? So Richard and I came up with this strategy
Maybe at that time `PythonArgParser` was not powerful enough to handle the routing of two function with same name but different C++ signature.
Will keep an eye on the CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17103
Differential Revision: D14523503
Pulled By: VitalyFedyunin
fbshipit-source-id: cae3e2678062da2eccd93b51d4050578c7a9ab80
Summary:
Changelog:
- Renames `gesv` to `solve` to remain consistent with `cholesky_solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `solve` under the name `gesv`, and add a deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18060
Differential Revision: D14503117
Pulled By: zou3519
fbshipit-source-id: 99c16d94e5970a19d7584b5915f051c030d49ff5
Summary:
Motivation:
- Earlier, `torch.btrifact` could not handle tensors with greater than 3 dimensions. This is because of the check:
> AT_CHECK(THTensor_(nDimension)(a) == 3, "expected 3D tensor, got size: ", a->sizes());
What is in this PR?:
- Move `btrifact` to ATen
- Remove relation to TH/THC.
- Handle tensors with more than three dimensions
- Tests
- Docs modifications: added a note about the non-pivoting variant.
[blocked due to old magma-cuda binaries]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14964
Differential Revision: D14405106
Pulled By: soumith
fbshipit-source-id: f051f5d6aaa45f85836a2867176c065733563184
Summary:
The main problem there is with differentiating batch norm statically
is that we make a lot of complex run-time decisions about the backend
we choose. Then, the autograd derivatives are implemented for every
backend separately, which makes sense, because they might be saving
buffers containing different values. To resolve the issue, the forward
op returns an index of the chosen backend, and the backward function
takes it as an argument, such that it knows how to interpret the buffers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15403
Differential Revision: D14098815
Pulled By: ailzhang
fbshipit-source-id: 7fcd3e6e0566433e81fe8286fb441c1ecaf198ad
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
We have:
- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
done in `torch/__init__.pyi.in`
For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.
An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500
Differential Revision: D13695553
Pulled By: ezyang
fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
Summary:
Partially fixes: https://github.com/pytorch/pytorch/issues/394
Implementation detail:
Codegen is modified to generate codes that looks like below:
```C++
static PyObject * THPVariable_svd(PyObject* self_, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"svd(Tensor input, bool some=True, bool compute_uv=True, *, TensorList[3] out=None)",
}, /*traceable=*/true);
ParsedArgs<6> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
static PyStructSequence_Field fields0[] = {
{"U", ""}, {"S", ""}, {"V", ""}, {nullptr}
};
static PyStructSequence_Desc desc0 = {
"torch.return_types.svd_out", nullptr,
fields0, 3
};
static PyTypeObject type0;
static bool namedtuple_type_initialized0 = false;
if (!namedtuple_type_initialized0) {
PyStructSequence_InitType(&type0, &desc0);
namedtuple_type_initialized0 = true;
}
static PyStructSequence_Field fields1[] = {
{"U", ""}, {"S", ""}, {"V", ""}, {nullptr}
};
static PyStructSequence_Desc desc1 = {
"torch.return_types.svd", nullptr,
fields1, 3
};
static PyTypeObject type1;
static bool namedtuple_type_initialized1 = false;
if (!namedtuple_type_initialized1) {
PyStructSequence_InitType(&type1, &desc1);
namedtuple_type_initialized1 = true;
}
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(&type1, dispatch_svd(r.tensor(0), r.toBool(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<3>(3);
return wrap(&type0, dispatch_svd(r.tensor(0), r.toBool(1), r.toBool(2), results[0], results[1], results[2]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
```
Types are defined as static member of `THPVariable_${op_name}` functions, and initialized at the first time the function is called.
When parsing function prototypes in `native_functions.yaml`, the parser will set the specified name as `field_name` when see things like `-> (Tensor t1, ...)`. These field names will be the field names of namedtuple. The class of namedtuples will be named `torch.return_types.${op_name}`.
In some python 2, `PyStructSequence` is not a subtype of tuple, so we have to create some functions to check if an object is a tuple or namedtuple for compatibility issue.
Operators in `native_functions.yaml` are changed such that only `max` and `svd` are generated as namedtuple. Tests are added for these two operators to see if the return value works as expected. Docs for these two ops are also updated to explicitly mention the return value is a namedtuple. More ops will be added in later PRs.
There is some issue with Windows build of linker unable to resolve `PyStructSequence_UnnamedField`, and some workaround is added to deal with this case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15429
Differential Revision: D13709678
Pulled By: ezyang
fbshipit-source-id: 23a511c9436977098afc49374e9a748b6e30bccf
Summary:
This PR does three things:
~~Allow `int64_t?` in function schema, which provide an elegant way of implementing null-able int arguments, as discussed in https://github.com/pytorch/pytorch/pull/15208#pullrequestreview-185230081~~
~~Originally implemented in https://github.com/pytorch/pytorch/pull/15235~~
~~Example:~~
```yaml
- func: myop(Tensor self, int64_t? dim=None) -> Tensor
variants: function
```
~~cc: zou3519~~
Edit: implemented in https://github.com/pytorch/pytorch/pull/15234
Previously tried in https://github.com/pytorch/pytorch/pull/12064. There was a problem that C++ does not have kwarg support, which makes it confusing to know whether `unique(t, 1)` actually means `unique(t, dim=1)` or `unique(t, sorted=1)`.
Now I think I have a better idea on how to implement this: there are two ATen operators: `unique` and `unique_dim`. `unique` has the same signature as in python, and exported to both python and C++. `unique_dim` has signature `unique_dim(tensor, dim, sorted=False, return_inverse=False)`, and only exported to C++, which could be used more naturally for a C++ user.
Differential Revision: D13540278
Pulled By: wanchaol
fbshipit-source-id: 3768c76a90b0881f565a1f890459ebccbdfe6ecd
Summary:
This PR implements infrastructure for post-processing a model to apply int8 quantization to its `nn.Linear` modules. Highlights of the implementation:
1) Inputs and outputs are `float` (quantized and packed internally), but the weight is quantized and packed ahead of time for efficiency. This implementation performs well in small-batch size GEMM calls. It should not be considered a general-purpose quantized GEMM kernel.
2) Weight packing is dependent on machine architecture (e.g. vector register width), so it is done just-in-time. Concretely, it is done on model load for the weights and it is done during operator execution for the input value.
3) Biases are unquantized
4) We fail loudly if we are attempting to run this on a machine that does not support FBGEMM. This is because we do not want a model's numerics to differ based on which machine it is run on. A model containing these FBGEMM ops *must* be run with FBGEMM
The API can be seen in the added test case. Highlights are:
1) `torch.jit.quantized.quantize_linear_modules` walks the module hierarchy of the passed-in Module and replaces all `nn.Linear` modules with a new `QuantizedLinear` module, which encapsulates the behavior described above.
2) `_pack()` and `_unpack()` script methods are present on `QuantizedLinear` modules. These methods should be called before serialization and after deserialization, respectively. This ensures that the weight matrix is properly packed for the running machine's architecture. Note that in the long term, we would like to move toward a more Pickle-style serialization technique, rather than having these explicit methods that mutate member values. This is blocked on being able to assign attributes in a ScriptMethod, among other things.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13777
Differential Revision: D13383276
Pulled By: jamesr66a
fbshipit-source-id: 00f29c9f34544add2b90107e3cf55a287802c344
Summary:
Optional clean up. This PR remove python_default_init from the yaml files, and the code-gen, and utilize optional type to do the work.
This also fix the bug in the #13149 to correctly adopt as_strided backward.
Fixes#9941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15234
Differential Revision: D13502044
Pulled By: wanchaol
fbshipit-source-id: 774b61fc4414482cf11d56e22bd0275aefb352a4
Summary:
For #6593 and #9515
This completes the support for optional<ScalarType> in native, JIT and autograd.
Note: Mostly following the existing implementation for optional<Scalar> that was added in https://github.com/pytorch/pytorch/pull/12582.
This PR introduces a way to make functions accept an optional dtype and it will unblock #9515 by allowing the `dtype` param for type promotion interface:
```
func: name(inputs, *, ScalarType? dtype=None, Casting casting=same_kind)
```
An alternative approach could have been using `ScalarType::Undefined` for the same purpose but without optional, though it would have been a bit hacky.
```
func: name(inputs, *, ScalarType dtype=Undefined, Casting casting=same_kind)
```
Here's an example use of this in action: 971f69eac6
There are already a bunch of native functions that were getting optional `dtype` through function overloading. https://github.com/pytorch/pytorch/pull/15133 is the attempt to migrate all of those. I will send those changes separately after this since some functions (e.g. sum) need quite a bit of change in the codebase. See the commits over there.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15154
Differential Revision: D13457760
Pulled By: tugrulates
fbshipit-source-id: 706134f0bd578683edd416b96329b49a1ba8ab48
Summary:
This is an optimized implementation that does the following:
1. created an empty Tensor of correct size.
2. fill the Tensor with correct values.
The following three designs to fill in the Tensor result in roughly the same performance. Hence, the 2nd option is taken for simpler code, and to return contiguous tensors.
1. Sequential: fill row coordinates first, then columns. This results in two for-loop and more arithmetic operations.
2. Interleaved: fill in index coordinates one by one, which jumps between the two output Tensor rows in every iteration.
3. Transpose: create a n X 2 Tensor, fill the Tensor sequentially, and then transpose it.
<img width="352" alt="screen shot 2018-12-10 at 3 54 39 pm" src="https://user-images.githubusercontent.com/16999635/49769172-07bd3580-fc94-11e8-8164-41839185e9f9.png">
NOTE:
This implementation returns a 2D tensor, instead of a tuple of two tensors. It means that users will not be able to do the following:
```python
x = torch.ones(3, 3)
i = torch.tril_indices(3, 3)
x[i] # need to first convert the 2D tensor into a tuple of two 1D tensors.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14904
Reviewed By: zou3519
Differential Revision: D13433027
Pulled By: mrshenli
fbshipit-source-id: 41c876aafcf584832d7069f7c5929ffb59e0ae6a