Commit Graph

1432 Commits

Author SHA1 Message Date
cpatru
6d896cb545 Update faq.rst so OOM section mentions checkpoint (#62709)
Summary:
This FAQ has a section for CUDA OOMs where there are lots of don'ts. This limits modeling solution. Deep nets can blow up memory due to output caching during training.
It's a known problem with a known solution: to trade-off compute for memory via checkpointing.
FAQ should mention it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62709

Reviewed By: nairbv

Differential Revision: D30103326

Pulled By: ezyang

fbshipit-source-id: 3a8b465a7fbe19aae88f83cc50fe82ebafcb56c9
2021-08-05 07:40:08 -07:00
Sean Lawlor
34c9f5a8da [DDP Communication Hook] Update get_tensor and set_tensor to be cleaner naming conventions (buffer() and set_buffer()) (#62662)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62662

Replaced the methods set_tensor(.) and get_tensor() in the python exposed API from the C++ logic with buffer() and set_buffer(.) to be a cleaner interface.

Reviewed By: SciPioneer

Differential Revision: D30012869

fbshipit-source-id: bd8efab583dd89c96f9aeb3dd48a12073f0b1482
2021-08-04 09:27:31 -07:00
Victor Quach
5830f122f1 Add docstrings for save_on_cpu hooks (#62410)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62410

This PR adds docstrings for CPU hooks introduced in #61928.

Also uncomments the warning about pinned memory in CUDA semantics docs.

Depends on: #62361.

For now docstrings are an orphan page at https://docs-preview.pytorch.org/62410/generated/torch.autograd.graph.set_save_on_cpu_hooks.html#torch-autograd-graph-set-save-on-cpu-hooks

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D29990129

Pulled By: Varal7

fbshipit-source-id: 7a98eeee6a0abb11e2c2d9169cd1aa35ad7ba3f4
2021-08-03 17:53:45 -07:00
Heitor Schueroff
d7d399f3df Exposes _aminmax as aminmax and makes it structured (#62401)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62401

This PR exposes the `torch._aminmax` operator as `torch.aminmax`.

**TODO**

- [x] add examples to documentation
- [x] add minmax to rst docs

fixes https://github.com/pytorch/pytorch/issues/62164

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D30072246

Pulled By: heitorschueroff

fbshipit-source-id: 557d30af7c28ca6c238c59122367104036429ecd
2021-08-03 16:10:43 -07:00
Andrew Gu
62a90c227f Make _Join, _Joinable, _JoinHook public (#62605)
Summary:
**Overview:**
This removes the preceding `_` from `_Join`, `_Joinable`, and `_JoinHook` in preparation for adding the generic join context manager tutorial (see [here](https://github.com/pytorch/tutorials/pull/1610)). This also adds a docs page, which can be linked from the tutorial. [Here](https://github.com/pytorch/pytorch/files/6919475/render.pdf) is a render of the docs page.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62605

Test Plan:
`DistributedDataParallel.join()`:
```
touch /tmp/barrier && TEMP_DIR="/tmp" BACKEND="nccl" WORLD_SIZE="2" gpurun python test/distributed/test_distributed_fork.py -- TestDistBackendWithFork.test_ddp_uneven_inputs TestDistBackendWithFork.test_ddp_uneven_inputs_stop_iteration_sync_bn TestDistBackendWithFork.test_ddp_grad_div_uneven_inputs TestDistBackendWithFork.test_ddp_uneven_input_join_disable TestDistBackendWithFork.test_ddp_uneven_input_exception
```

`ZeroRedundancyOptimizer`:
```
gpurun4 python test/distributed/optim/test_zero_redundancy_optimizer.py
```
NOTE: DDP overlap tests are failing due to a landing race. See https://github.com/pytorch/pytorch/pull/62592. Once the fix is landed, I will rebase, and tests should be passing.

`Join`:
```
gpurun4 python test/distributed/algorithms/test_join.py
```

Reviewed By: mrshenli

Differential Revision: D30055544

Pulled By: andwgu

fbshipit-source-id: a5ce1f1d9f1904de3bdd4edd0b31b0a612d87026
2021-08-03 12:20:11 -07:00
Kevin Tse
87465a6e68 adding operator cumulative_trapezoid (#61615)
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* https://github.com/pytorch/pytorch/issues/61616
* **https://github.com/pytorch/pytorch/issues/61615**
* https://github.com/pytorch/pytorch/issues/61475

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61615

Reviewed By: malfet, mruberry

Differential Revision: D29975064

Pulled By: NivekT

fbshipit-source-id: 4d4e98f3efb720fdc44eb238ecbf0fa157ac13d7
2021-08-03 08:04:00 -07:00
Yi Wang
db071ef005 [Reland][DDP Communication Hook] Rename 4 Methods of GradBucket Class (#62592)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62592

Reland #62510

`GradBucket` is an important class defined in both C++ and Python, used for PyTorch Distributed Training. We need to rename the following methods for simplicity:
1) get_index -> index
2) is_the_last_bucket_to_allreduce -> is_last,
3) get_per_parameter_tensors -> gradients,
4) get_model_params_for_bucket -> parameters.
ghstack-source-id: 134848352

Test Plan: unit test

Reviewed By: andwgu

Differential Revision: D30049431

fbshipit-source-id: 1bcac331aa30e529b7230e3891bc811c531b0ea9
2021-08-02 16:38:09 -07:00
Howard Huang
dc1bd6acee Remove PROCESS GROUP rpc backend (#62411)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62411

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D29990408

Pulled By: H-Huang

fbshipit-source-id: 183d3b316767b12993cebbe32b73c2850fd1cc42
2021-08-02 12:26:22 -07:00
Eli Uriegas
6f95850127 Revert D30024161: [DDP Communication Hook] Rename 4 Methods of GradBucket Class
Test Plan: revert-hammer

Differential Revision:
D30024161 (29c8b1db57)

Original commit changeset: 07e6072a2f7b

fbshipit-source-id: d571c2caadaf7b71fe2aba3c0597bd8074d153de
2021-08-02 10:26:54 -07:00
Qing Hu
29c8b1db57 [DDP Communication Hook] Rename 4 Methods of GradBucket Class (#62510)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62510

`GradBucket` is an important class defined in both C++ and Python, used for PyTorch Distributed Training. We need to rename the following methods for simplicity:
1) get_index -> index
2) is_the_last_bucket_to_allreduce -> is_last,
3) get_per_parameter_tensors -> gradients,
4) get_model_params_for_bucket -> parameters.

Test Plan:
Local run comprehensive test with following results:
https://pxl.cl/1Ml8b
For two timeout failure test cases, most likely environment related and fail in my devserver.

Reviewed By: SciPioneer

Differential Revision: D30024161

fbshipit-source-id: 07e6072a2f7b81f731425d9b71f8c8b60d383b0f
2021-08-02 09:33:32 -07:00
Ce Gao
73ba166e2a fix(elastic-docs): Fix elastic launch doc (#62378)
Summary:
The documentation link should be https://pytorch.org/docs/stable/elastic/run.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62378

Reviewed By: aivanou

Differential Revision: D30002830

Pulled By: kiukchung

fbshipit-source-id: 34b434acaa10222561df43f6397a2420eef02015
2021-07-30 10:58:13 -07:00
Natalia Gimelshein
d783617216 enable warnings on cuda synchronization (#62092)
Summary:
This creates `torch.cuda.set_warn_on_synchronization()` function that would warn or error when synchronizing operation is performed. We could wrap it in a context manager for ease of use, but it would be a lie, because it sets global, and not thread-local state. Since it's intended for debugging, maybe that's ok though.
As all `torch.cuda.*` functions, it's going through CPython, not pybind, so the argument is converted to long before being passed to c10 function. I'll make python argument a python enum class, but without pybind it'll still have to go thourgh long conversion.

For a test script
```
import torch
torch.cuda.set_warn_on_synchronization(1)
x=torch.randn(10, device="cuda")
x.nonzero()
y=torch.randn((), device="cuda")

if y:
    print("something")
torch.multinomial(x.abs(), 10, replacement=False)
torch.randperm(20000, device="cuda")
ind = torch.randint(10, (3,), device="cuda")
mask = torch.randint(2, (10,), device="cuda", dtype=torch.bool)
val = torch.randn((), device="cuda")
x[mask]=1.
x[mask] = val
torch.cuda.synchronize()
```
the output is
```
/../playground/sync_warn_test.py:4: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  x.nonzero()
/../playground/sync_warn_test.py:7: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  if y:
something
/../playground/sync_warn_test.py:9: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  torch.multinomial(x.abs(), 10, replacement=False)
/../playground/sync_warn_test.py:15: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  x[mask] = val
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62092

Reviewed By: mruberry

Differential Revision: D29968792

Pulled By: ngimel

fbshipit-source-id: cc6f817212c164727ed99ecf6ab050dc29631b9e
2021-07-30 09:13:01 -07:00
Gary Miguel
9fdf7ec6a2 [docs] Update sphinx to 3.5.4 (#61601)
Summary:
Sphinx 4.x is out, but it seems that requires many more changes to
adopt. So instead use the latest version of 3.x, which includes
several nice features.

* Add some noindex directives to deal with warnings that would otherwise
  be triggered by this change due to conflicts between the docstrings
  declaring a function and the autodoc extension declaring the
  same function.
* Update distributions.utils.lazy_property to make it look like a
  regular property when sphinx autodoc inspects classes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61601

Reviewed By: ejguan

Differential Revision: D29801876

Pulled By: albanD

fbshipit-source-id: 544d2434a15ceb77bff236e934dbd8e4dbd9d160
2021-07-30 06:23:10 -07:00
huqinghao
7fc96db45d fix typo errors in quantization-support.rst Line320 (#44447)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44379

change
"`torch.per_channel_symmetric` — per tensor, symmetric"
to
 "`torch.per_channel_symmetric` — per channel, symmetric"

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44447

Reviewed By: mruberry

Differential Revision: D29909645

Pulled By: ezyang

fbshipit-source-id: e1505d070ec2b335dd6503b528e6a2f3bda2f1e3
2021-07-27 10:42:29 -07:00
mattip
a13f714b6d DOC: remove git stamp from release documentation version (#58486)
Summary:
CI built the documentation for the recent 1.9.0rc1 tag, but left the git version in the `version`, so (as of now) going to https://pytorch.org/docs/1.9.0/index.html and looking at the version in the upper-left corner shows "1.9.0a0+git5f0bbb3" not "1.9.0". This PR should change that to cut off everything after and including the "a".

It should be cherry-picked to the release/1.9 branch so that the next rc will override the current documentation with a "cleaner" version.

brianjo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58486

Reviewed By: zou3519

Differential Revision: D28640476

Pulled By: malfet

fbshipit-source-id: 9fd1063f4a2bc90fa8c1d12666e8c0de3d324b5c
2021-07-26 16:28:59 -07:00
Yukio Siraichi
5224490ae9 Implement NumPy-like frombuffer tensor constructor. (#59077)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59077

Fixes #58549

`from_buffer` constructs a tensor object from an already allocated buffer through
CPython's buffer protocol. Besides the standard `dtype`, `count`, and `offset` parameters,
this function also accepts:

- `device`: where the buffer lives
- `requires_grad`: should autograd record operations on the new tensor

A new test file _test_buffer_protocol.py_ was created. Currently, only CPU tests were
implemented. That's because neither PyTorch nor Numba implements CPython's buffer
protocol. Therefore, there's no way to create a CUDA buffer with the existing
dependencies (could use PyCUDA for that, though).

At the moment, if `device` differs from the device the buffer actually lives, two things
may happen:

- `RuntimeError`, if `device='cuda'`
- Segmentation fault (not tested -- see above), if `device='cpu'`

Test Plan: Imported from OSS

Reviewed By: jbschlosser

Differential Revision: D29870914

Pulled By: mruberry

fbshipit-source-id: 9fa8611aeffedfe39c9af74558178157a11326bb
2021-07-23 13:17:48 -07:00
kshitij12345
943ca5f6f7 [special] alias for mvlgamma (#61633)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Have added `out` variant for consistency.

TODO:
* [x] Check docs https://docs-preview.pytorch.org/61633/special.html#torch.special.multigammaln

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61633

Reviewed By: albanD

Differential Revision: D29815514

Pulled By: mruberry

fbshipit-source-id: 003c7b6a5938ecc7a96727310e8a39da0b3d7aca
2021-07-23 11:24:27 -07:00
Calvin McCarter
bdf439a958 Adds _LazyInstanceNorm and LazyInstanceNormXd (#60982)
Summary:
Signed-off-by: Calvin McCarter <calvin@lightmatter.co>

Fixes https://github.com/pytorch/pytorch/issues/60981

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60982

Reviewed By: albanD

Differential Revision: D29810547

Pulled By: jbschlosser

fbshipit-source-id: d933d4c7fe5cf7be9b09a5ab93f740b94cf08cc1
2021-07-21 06:45:45 -07:00
Nikita Shulga
604f503d30 Revert D29794958 + compilation fix (#61937)
Summary:
This PR un-reverts https://github.com/pytorch/pytorch/issues/61475 + fixes compilation with MSVC, that does not recognize alternative operator spellings (i.e. using `or` instead of `||` )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61937

Reviewed By: albanD

Differential Revision: D29805941

Pulled By: malfet

fbshipit-source-id: 01e5963c6717c1b44b260300d87ba0bf57f26ce9
2021-07-20 18:14:45 -07:00
Nikita Shulga
22fff61f06 Revert D29794958: [pytorch][PR] changing trapz to trapezoid
Test Plan: revert-hammer

Differential Revision:
D29794958 (95cec8f4fa)

Original commit changeset: 60b9c07efd47

fbshipit-source-id: 2dcda2d62e01c2521a86ae5ed8246cfb686d3f64
2021-07-20 16:00:46 -07:00
Kevin Tse
95cec8f4fa changing trapz to trapezoid (#61475)
Summary:
This PR resolves issue https://github.com/pytorch/pytorch/issues/52606 while also adding support for complex number

Stack from [ghstack](https://github.com/ezyang/ghstack):
* https://github.com/pytorch/pytorch/issues/61616
* https://github.com/pytorch/pytorch/issues/61615
* **https://github.com/pytorch/pytorch/issues/61475**

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61475

Reviewed By: mruberry

Differential Revision: D29794958

Pulled By: NivekT

fbshipit-source-id: 60b9c07efd47fd85b9c8178768fc7828d7b57d29
2021-07-20 15:25:55 -07:00
ndkshr
0a6d88244b Fix grammatical errors on the PyTorch Contribution Guide (#61818)
Summary:
## What does the PR do?
- Fix grammatical errors on the PyTorch Contribution Guide page.

## Changes [Screenshots]
> Note:
> 1. The changes are highlighted in each screenshot.
> 2. Could not load CSS while testing locally, hope that is not an issue as all the changes are made on the content.

1.
![Change1](https://user-images.githubusercontent.com/20442648/126077764-39fd8b78-524f-407d-bc39-c93167bd10a7.PNG)

2.
![Change2](https://user-images.githubusercontent.com/20442648/126077766-9dd7dc61-ef06-41d0-a7e5-cfd179ece0cd.PNG)

3.
![Change3](https://user-images.githubusercontent.com/20442648/126077767-2c2e05e4-09fc-403a-a18e-9b108651a5f8.PNG)

4.
![Change4](https://user-images.githubusercontent.com/20442648/126077769-ad755db6-3afa-457b-b95c-9f6c6281f828.PNG)

5.
![Change5](https://user-images.githubusercontent.com/20442648/126077770-a7759dee-7f90-4b9e-a07c-4dec4ca934d0.PNG)

6.
![Change6](https://user-images.githubusercontent.com/20442648/126077772-0474e58d-c0c8-4156-b56f-808d225c38e7.PNG)

7.
![Change7](https://user-images.githubusercontent.com/20442648/126077774-d48382a7-5379-49a4-a8d2-b478fabf0bf0.PNG)

8.
![Change8](https://user-images.githubusercontent.com/20442648/126077777-fd743825-8dd7-4cb9-a22c-233e5fa085a6.PNG)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61818

Reviewed By: dzhulgakov

Differential Revision: D29775606

Pulled By: mrshenli

fbshipit-source-id: 3f3bfdeede341f784b72dfe55da9ba8bdce1192a
2021-07-19 15:06:22 -07:00
Kushashwa Ravi Shrimali
7e1f01d4c0 Alias for polygamma (#59691)
Summary:
See https://github.com/pytorch/pytorch/issues/50345

cc: mruberry kshitij12345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59691

Reviewed By: gchanan

Differential Revision: D29707514

Pulled By: mruberry

fbshipit-source-id: 40c15e1fda3d9f7013977b0f36a77b228dda6aa5
2021-07-16 00:06:27 -07:00
kshitij12345
968a01a94a [special] migrate xlogy (#60641)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60641

Reviewed By: gchanan

Differential Revision: D29709306

Pulled By: mruberry

fbshipit-source-id: e8a5f64009a895a25618637de40b55cf36b8f794
2021-07-15 15:32:09 -07:00
Sam Estep
3a0801f960 [skip ci] Fix "arugment" typos (#61459)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/61455.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61459

Reviewed By: soulitzer

Differential Revision: D29636559

Pulled By: samestep

fbshipit-source-id: 9ad65265c0491d9e81bb303abe3a07c6843bfa4a
2021-07-15 15:20:18 -07:00
Eli Uriegas
e5fcc903d6 torch: Make __version__ better with comparisons (#61556)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61556

Prior to 1.10.0 `torch.__version__` was stored as a str and so many did
comparisons against `torch.__version__` as if it were a str. In order to not
break them we have TorchVersion which masquerades as a str while also
having the ability to compare against both packaging.version.Version as
well as tuples of values, eg. (1, 2, 1)

Examples:
  Comparing a TorchVersion object to a Version object
```
TorchVersion('1.10.0a') > Version('1.10.0a')
```
  Comparing a TorchVersion object to a Tuple object
```
TorchVersion('1.10.0a') > (1, 2)    # 1.2
TorchVersion('1.10.0a') > (1, 2, 1) # 1.2.1
```

  Comparing a TorchVersion object against a string
```
TorchVersion('1.10.0a') > '1.2'
TorchVersion('1.10.0a') > '1.2.1'
```

Resolves https://github.com/pytorch/pytorch/issues/61540

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D29671234

Pulled By: seemethere

fbshipit-source-id: 6044805918723b4aca60bbec4b5aafc1189eaad7
2021-07-15 15:12:09 -07:00
Jinay Dagli
a9c3580080 Grammatical update of tech docs (#61547)
Summary:
Added some minor grammatical updates to the 'Complex Numbers' docs.

![Screenshot (180)](https://user-images.githubusercontent.com/75036632/125342884-0b952500-e373-11eb-9e63-410ff31e6c21.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61547

Reviewed By: zou3519

Differential Revision: D29677361

Pulled By: H-Huang

fbshipit-source-id: 78222310a755911192905a8f52aa0ae325900006
2021-07-14 14:01:59 -07:00
James Reed
ac64a41e8a [FX][docs] Add note about python set pitfall (#61597)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61597

Test Plan: Imported from OSS

Reviewed By: Chillee

Differential Revision: D29685735

Pulled By: jamesr66a

fbshipit-source-id: b5c5b53ff94fac1022f69b7c0ad4e4055b116029
2021-07-13 20:09:13 -07:00
Anjali Chourdia
30e48bbeae Add neg bit (#56058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56058

User facing changes:
1. Adds a negative bit and corresponding new API (`is_neg()`,`resolve_neg()`)
2. `tensor.conj().imag` now returns a floating point tensor with neg bit set to 1 instead of a tensor with no notion of negative bit. Note that imag is still a view and all the view properties still hold for imag.

Non user facing changes:
1. Added a new Negative dispatch key and a backend fallback to handle it
2. Updated copy kernel to handle negative bit
3. Merged conjugate and negative bit fallback kernel
4. fixed https://github.com/pytorch/pytorch/issues/60478 (caused due to https://github.com/pytorch/pytorch/pull/54987)

Testing:
1. Added a new OpInfo based test `test_neg_view` (verifies that out-of-place and in-place operations work correctly for all operations when the input is a neg view tensor by checking the result against an actually negated tensor, verifies that autograd returns the same output for both neg view and actually negated tensors as well as it works fine when grad_out is a neg view).
2. Added a new test class containing `test_conj_view`, `test_neg_view`.

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D29636403

fbshipit-source-id: 12214c9dc4806c51850f4a72a109db9527c0ca63
2021-07-13 13:50:42 -07:00
Michael Dagitses
58df01c3b8 clarify default value of requires_grad for tensors (#61038)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61038

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D29491984

Pulled By: dagitses

fbshipit-source-id: 7e6b7f8e81d77f38c881b86a68c17d3cf5483dad
2021-07-12 12:57:37 -07:00
kshitij12345
3faf6a715d [special] migrate log_softmax (#60512)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Rendered Docs: https://14335157-65600975-gh.circle-artifacts.com/0/docs/special.html#torch.special.log_softmax

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60512

Reviewed By: iramazanli

Differential Revision: D29626262

Pulled By: mruberry

fbshipit-source-id: c42d4105531ffb004f11f1ba6ae50be19bc02c91
2021-07-12 11:01:25 -07:00
Jithun Nair
336970c03e Add note on torch.distributed backends on ROCm (#58975)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58975

Reviewed By: soulitzer

Differential Revision: D29595510

Pulled By: rohan-varma

fbshipit-source-id: 384bb67fcd003d65b76e957a474406b2a38099b9
2021-07-10 03:51:19 -07:00
Lily Johnson
5fbc853c5f [package] PackageExporter remove verbose mode (#61145)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61145

Remove 'verbose' mode from PackageExporter as people have complained that it is not useful.

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D29559681

Pulled By: Lilyjjo

fbshipit-source-id: eadb1a3a25fadc64119334a09bf1fa4b355b1edd
2021-07-08 18:26:43 -07:00
BowenBao
8726f08e15 [ONNX] Update documentation (#58712) (#60249)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60249

* Add introductory paragraph explaining what ONNX is and what the
  torch.onnx module does.
* In "Tracing vs Scripting" and doc-string for torch.onnx.export(),
  clarify that exporting always happens on ScriptModules and that
  tracing and scripting are the two ways to produce a ScriptModule.
* Remove examples of using Caffe2 to run exported models.
  Caffe2's website says it's deprecated, so it's probably best not to
  encourage people to use it by including it in examples.
* Remove a lot of content that's redundant:
  * The example of how to mix tracing and scripting, and instead
    link to Introduction to TorchScript, which includes very similar
    content.
  * "Type annotations" section. Link to TorchScript docs which explain
    that in more detail.
  * "Using dictionaries to handle Named Arguments as model inputs"
    section. It's redundant with the description of the `args` argument
    to `export()`, which appears on the same page once the HTML
    is generated.
  * Remove the list of supported Tensor indexing patterns. If it's not
    in the list of unsupported patterns, users can assume it's
    supported, so having both is redundant.
  * Remove the list of supported operators and models.
    I think the list of supported operators is not very useful.
    A list of supported model architectures may be useful, but in
    reality it's already very out of date. We should add it back if
    / when we have a system for keeping it up to date.
  * "Operator Export Type" section. It's redundant with the description
    of the `operator_export_type` arg to to `export()`, which appears on
    the same page once the HTML is generated.
  * "Use external data format" section. It's redundant with the
    description of the `use_external_data_format` arg to `export()`.
  * "Training" section.  It's redundant with the
    description of the `training` arg to `export()`.
* Move the content about different operator implementations producing
  different results from the "Limitations" section into the doc for the
  `operator_export_type` arg.
* Document "quantized" -> "caffe2" behavior of
  OperatorExportTypes.ONNX_ATEN_FALLBACK.
* Combing the text about using torch.Tensor.item() and the text about
  using NumPy types into a section titled
  "Avoid NumPy and built-in Python types", since they're both
  fundamentally about the same issue.
* Rename "Write PyTorch model in Torch way" to "Avoiding Pitfalls".
* Lots of minor fixes: spelling, grammar, brevity, fixing links, adding
  links.
* Clarify limitation on input and output types. Phrasing it in terms of
  PyTorch types is much more accessible than in terms of TorchScript
  types. Also clarify what actually happens when dict and str are used
  as inputs and outputs.
* In Supported operators, use torch function and class names and link
  to them. This is more user friendly than using the internal aten
  op names.
* Remove references to VariableType.h, which doesn't appear to contain
  the information that it once did. Instead refer to the generated
  .pyi files.
* Remove the text in the FAQ about appending to lists within loops.
  I think this limitation is no longer present
  (perhaps since https://github.com/pytorch/pytorch/pull/51577).
* Minor fixes to some code I read along the way.
* Explain the current rationale for the weird ::prim_PythonOp op name.

Test Plan: Imported from OSS

Reviewed By: zou3519, ZolotukhinM

Differential Revision: D29494912

Pulled By: SplitInfinity

fbshipit-source-id: 7756c010b2320de0692369289604403d28877719

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-07-08 16:29:32 -07:00
Aliaksandr Ivanou
13658b10bb [torch] Various improvements to torch.distributed.launch and torch.distributed.run (#61294)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61294

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60925

* Make `torch.distributed.launch` restarts to 0
* Remove unnecessary `-use_env` warning, move `-use_env` warnings
* Move `-use_env` warnings to `torch.distributed.launch`
* Make default log level WARNING
* Add new doc section around transitioning to `torch.distributed.run`
* Make `torch.distributed.launch` not use error-propagation
* Set default events handler to `null` that does not print events to console
* Add reference from `torch.distributed.launch` to `torch.distributed.run`
* Set correct preexec function that sends SIGTERM to child processes when parent dies

Issues resolved:

https://github.com/pytorch/pytorch/issues/60716
https://github.com/pytorch/pytorch/issues/60754

Test Plan:
sandcastle

    python -m torch.distributed.launch --nproc_per_node 2 main.py -> uses 0 restarts
    python -m torch.distributed.run --nproc_per_node 2 main.py -> uses default for torchelastic, 0 restarts

    python -m torch.distributed.launch --nproc_per_node=4  --use_env --no_python  main.py -> produces error
    python -m torch.distributed.launch --nproc_per_node=4  --use_env main.py -> no warning
    python -m torch.distributed.launch --nproc_per_node=4  --no_python  main.py ->warning

Output of running torch.distributed.launch without --use_env:

    $path/torch/distributed/launch.py:173: FutureWarning: The module torch.distributed.launch is deprecated
    and will be removed in future. Use torch.distributed.run.
    Note that --use_env is set by default in torch.distributed.run.
    If your script expects `--local_rank` argument to be set, please
    change it to read from `os.environ('LOCAL_RANK')` instead.

New section:

{F628923078}

{F628974089}

Reviewed By: cbalioglu

Differential Revision: D29559553

fbshipit-source-id: 03ed9ba638bf154354e1530ffc964688431edf6b
2021-07-08 16:28:06 -07:00
Howard Huang
cdc027679b Add compare_set in distributed docs (#61351)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61351

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D29588206

Pulled By: H-Huang

fbshipit-source-id: 9db48e7b6de29503275f10616470ad2d66b075f9
2021-07-08 12:30:32 -07:00
Kushashwa Ravi Shrimali
423523d8bb Alias for logsumexp to special namespace (#58838)
Summary:
See https://github.com/pytorch/pytorch/issues/50345

cc: kshitij12345 Lezcano mruberry

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58838

Reviewed By: malfet

Differential Revision: D29565033

Pulled By: mruberry

fbshipit-source-id: 9b715ea00c78f47b6f183357ee3c7d4c3abe4d01
2021-07-07 13:32:15 -07:00
Philip Meier
1262b2c4c6 fix torch.futures docstring examples (#61029)
Summary:
Trying to run the doctests for the complete documentation hangs if it reaches the examples of `torch.futures`. It turns out to be only syntax errors, which are normally just reported. My guess is that `doctest` probably doesn't work well for failures within async stuff.

Anyway, while debugging this, I fixed the syntax.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61029

Reviewed By: mruberry

Differential Revision: D29571923

Pulled By: mrshenli

fbshipit-source-id: bb8112be5302c6ec43151590b438b195a8f30a06
2021-07-07 11:47:55 -07:00
Vitaly Fedyunin
ccfdb30644 Revert D29413019: [torch] Various improvements to torch.distributed.launch and torch.distributed.run
Test Plan: revert-hammer

Differential Revision:
D29413019 (4e181dfc35)

Original commit changeset: 323bfbad9d0e

fbshipit-source-id: 1f8ae4b3d0a23f3eaff28c37e9148efff25fafe2
2021-07-01 08:44:51 -07:00
Aliaksandr Ivanou
4e181dfc35 [torch] Various improvements to torch.distributed.launch and torch.distributed.run (#60925)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60925

* Make `torch.distributed.launch` restarts to 0
* Remove unnecessary `-use_env` warning, move `-use_env` warnings
* Move `-use_env` warnings to `torch.distributed.launch`
* Make default log level WARNING
* Add new doc section around transitioning to `torch.distributed.run`
* Make `torch.distributed.launch` not use error-propagation
* Set default events handler to `null` that does not print events to console
* Add reference from `torch.distributed.launch` to `torch.distributed.run`
* Set correct preexec function that sends SIGTERM to child processes when parent dies

Issues resolved:

https://github.com/pytorch/pytorch/issues/60716
https://github.com/pytorch/pytorch/issues/60754

Test Plan:
sandcastle

    python -m torch.distributed.launch --nproc_per_node 2 main.py -> uses 0 restarts
    python -m torch.distributed.run --nproc_per_node 2 main.py -> uses default for torchelastic, 0 restarts

    python -m torch.distributed.launch --nproc_per_node=4  --use_env --no_python  main.py -> produces error
    python -m torch.distributed.launch --nproc_per_node=4  --use_env main.py -> no warning
    python -m torch.distributed.launch --nproc_per_node=4  --no_python  main.py ->warning

Output of running torch.distributed.launch without --use_env:

    $path/torch/distributed/launch.py:173: FutureWarning: The module torch.distributed.launch is deprecated
    and will be removed in future. Use torch.distributed.run.
    Note that --use_env is set by default in torch.distributed.run.
    If your script expects `--local_rank` argument to be set, please
    change it to read from `os.environ('LOCAL_RANK')` instead.

New section:

{F628923078}

{F628974089}

Reviewed By: kiukchung, cbalioglu

Differential Revision: D29413019

fbshipit-source-id: 323bfbad9d0e4aba3b10ddd7a243ca6e48169630
2021-06-30 23:31:02 -07:00
Heitor Schueroff
f32f85e6da Implemented torch.corrcoef (#60420)
Summary:
Implements `torch.corrcoef` similar to [`np.corrcoef`](https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html) using `torch.cov` implemented in https://github.com/pytorch/pytorch/pull/58311.

closes https://github.com/pytorch/pytorch/issues/1254

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60420

Reviewed By: mruberry

Differential Revision: D29474687

Pulled By: heitorschueroff

fbshipit-source-id: f3c7c5610363aebd88274a51fc77e3cf879cb611
2021-06-30 12:36:02 -07:00
Heitor Schueroff
ec9c03c234 Implemented torch.cov (#58311)
Summary:
Based from https://github.com/pytorch/pytorch/pull/50466

Adds the initial implementation of `torch.cov` similar to `numpy.cov`. For simplicity, we removed support for many parameters in `numpy.cov` that are either redundant such as `bias`, or have simple workarounds such as `y` and `rowvar`.

cc PandaBoi

closes https://github.com/pytorch/pytorch/issues/19037

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58311

Reviewed By: jbschlosser

Differential Revision: D29431651

Pulled By: heitorschueroff

fbshipit-source-id: 167dea880f534934b145ba94291a9d634c25b01b
2021-06-29 14:02:39 -07:00
Jeff Yang
a8057e7ef1 docs: add permute in torch docs (#60821)
Summary:
fix https://github.com/pytorch/pytorch/issues/60181

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60821

Reviewed By: VitalyFedyunin

Differential Revision: D29431949

Pulled By: jbschlosser

fbshipit-source-id: 2353afceaa188315cde1f0c955897c4750809c8e
2021-06-28 11:20:35 -07:00
Michael Carilli
2fa6c7627e [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream (#60421)
Summary:
Before https://github.com/pytorch/pytorch/pull/57833, calls to backward() or grad() synced only the calling thread's default stream with autograd leaf streams at the end of backward. This made the following weird pattern safe:
```python
with torch.cuda.stream(s):
    # imagine forward used many streams, so backward leaf nodes may run on many streams
    loss.backward()
# no sync
use grads
```

but a more benign-looking pattern was unsafe:
```python
with torch.cuda.stream(s):
    # imagine forward used a lot of streams, so backward leaf nodes may run on many streams
    loss.backward()
    # backward() syncs the default stream with all the leaf streams, but does not sync s with anything,
    # so counterintuitively (even though we're in the same stream context as backward()!)
    # it is NOT SAFE to use grads here, and there's no easy way to make it safe,
    # unless you manually sync on all the streams you used in forward,
    # or move "use grads" back to default stream outside the context.
    use grads
```
mruberry ngimel and I decided backward() should have the [same user-facing stream semantics as any cuda op](https://pytorch.org/docs/master/notes/cuda.html#stream-semantics-of-backward-passes).** In other words, the weird pattern should be unsafe, and the benign-looking pattern should be safe. Implementationwise, this meant backward() should sync its calling thread's current stream, not default stream, with the leaf streams.

After https://github.com/pytorch/pytorch/pull/57833, backward syncs the calling thread's current stream AND default stream with all leaf streams at the end of backward. The default stream syncs were retained for temporary backward compatibility.

This PR finishes https://github.com/pytorch/pytorch/pull/57833's work by deleting syncs on the default stream.

With this PR, graph-capturing an entire backward() call should be possible (see the [test_graph_grad_scaling diffs](https://github.com/pytorch/pytorch/compare/master...mcarilli:streaming_backwards_remove_default_syncs?expand=1#diff-893b1eea27352f336f4cd832919e48d721e4e90186e63400b8596db6b82e7450R3641-R3642)).

** first paragraph has a formatting error which this PR should also fix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60421

Reviewed By: albanD

Differential Revision: D29370344

Pulled By: ngimel

fbshipit-source-id: 3248bc5fb92fc517db0c15c897e5d7250f67d7fe
2021-06-24 17:34:02 -07:00
sawradip
eddc5f40f9 Added GLU and FeatureAlphaDropout to nn docs (#60590)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60563 and https://github.com/pytorch/pytorch/issues/60570

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60590

Reviewed By: albanD

Differential Revision: D29352372

Pulled By: jbschlosser

fbshipit-source-id: f81dd65deab1848a68dc202df252c416ce5214d0
2021-06-24 08:00:18 -07:00
Luca Wehrstedt
bb9e1150ea Revert D29342234: [pytorch][PR] [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream
Test Plan: revert-hammer

Differential Revision:
D29342234 (675cea1adb)

Original commit changeset: 98e6be7fdd85

fbshipit-source-id: 84022973248b2254210eee57402df2c4f4bc43c6
2021-06-24 04:49:28 -07:00
kshitij12345
dfd2edc025 [special] add zeta (#59623)
Summary:
Reference https://github.com/pytorch/pytorch/issues/50345

`zeta` was already present in the codebase to support computation of `polygamma`.

However, `zeta` only had `double(double, double)` signature **for CPU** before the PR (which meant that computation `polygamma` were always upcasted to `double` for zeta part).

With this PR, float computations will take place in float and double in double.

Have also refactored the code and moved the duplicate code from `Math.cuh` to `Math.h`

**Note**: For scipy, q is optional, and if it is `None`, it defaults `1` which corresponds to Reimann-Zeta. However, for `torch.specia.zeta`, I made it mandatory cause for me it feels odd without `q` this is Reimann-Zeta and with `q` it is the general Hurwitz Zeta. I think sticking to just general made more sense as passing `1` for q sounds trivial.

Verify:
* [x] Docs https://14234587-65600975-gh.circle-artifacts.com/0/docs/special.html#torch.special.zeta

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59623

Reviewed By: ngimel

Differential Revision: D29348269

Pulled By: mruberry

fbshipit-source-id: a3f9ebe1f7724dbe66de2b391afb9da1cfc3e4bb
2021-06-24 00:00:12 -07:00
Akifumi Imanishi
26cdec6ce4 Support torch.bitwise_{left/right}_shift and __rlshift__, __rrshift__ (#59544)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58121

This PR implements `torch.bitwise_left_shift` and `torch.bitwise_right_shift` and `torch.Tensor.{__rlshift__/__rrshift__}`for compatibility with Python array API standard.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59544

Reviewed By: ngimel

Differential Revision: D29348869

Pulled By: mruberry

fbshipit-source-id: 329aee296cf890735e8a9f858bccfe87c03d06ca
2021-06-23 23:57:16 -07:00
Michael Carilli
675cea1adb [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream (#60421)
Summary:
Before https://github.com/pytorch/pytorch/pull/57833, calls to backward() or grad() synced only the calling thread's default stream with autograd leaf streams at the end of backward. This made the following weird pattern safe:
```python
with torch.cuda.stream(s):
    # imagine forward used many streams, so backward leaf nodes may run on many streams
    loss.backward()
# no sync
use grads
```

but a more benign-looking pattern was unsafe:
```python
with torch.cuda.stream(s):
    # imagine forward used a lot of streams, so backward leaf nodes may run on many streams
    loss.backward()
    # backward() syncs the default stream with all the leaf streams, but does not sync s with anything,
    # so counterintuitively (even though we're in the same stream context as backward()!)
    # it is NOT SAFE to use grads here, and there's no easy way to make it safe,
    # unless you manually sync on all the streams you used in forward,
    # or move "use grads" back to default stream outside the context.
    use grads
```
mruberry ngimel and I decided backward() should have the [same user-facing stream semantics as any cuda op](https://pytorch.org/docs/master/notes/cuda.html#stream-semantics-of-backward-passes).** In other words, the weird pattern should be unsafe, and the benign-looking pattern should be safe. Implementationwise, this meant backward() should sync its calling thread's current stream, not default stream, with the leaf streams.

After https://github.com/pytorch/pytorch/pull/57833, backward syncs the calling thread's current stream AND default stream with all leaf streams at the end of backward. The default stream syncs were retained for temporary backward compatibility.

This PR finishes https://github.com/pytorch/pytorch/pull/57833's work by deleting syncs on the default stream.

With this PR, graph-capturing an entire backward() call should be possible (see the [test_graph_grad_scaling diffs](https://github.com/pytorch/pytorch/compare/master...mcarilli:streaming_backwards_remove_default_syncs?expand=1#diff-893b1eea27352f336f4cd832919e48d721e4e90186e63400b8596db6b82e7450R3641-R3642)).

** first paragraph has a formatting error which this PR should also fix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60421

Reviewed By: VitalyFedyunin, albanD

Differential Revision: D29342234

Pulled By: ngimel

fbshipit-source-id: 98e6be7fdd8550872f0a78f9a66cb8dfe75abf63
2021-06-23 23:35:24 -07:00
Ilqar Ramazanli
63219f1f9f To add Rectified Adam Algorithm to Optimizers (#58968)
Summary:
Fixes : https://github.com/pytorch/pytorch/issues/24892

In the paper : https://arxiv.org/pdf/1908.03265.pdf  Liyuan Liu et al. suggested a new optimization algorithm with an essence of similar to Adam Algorithm.

It has been discussed in the paper that, without warmup heuristic, in the early stage of adaptive optimization / learning algorithms sometimes we can get undesirable large variance which can slow overall convergence process.

Authors proposed the idea of rectification of variance of adaptive learning rate when it is expected to be high.

Differing from the paper, we selected variance tractability cut-off as 5 instead of 4. This adjustment is common practice, and could be found in the code-repository and also tensorflow swift optim library as well :

2f03dd1970/radam/radam.py (L156)

f51ee4618d/Sources/TensorFlow/Optimizers/MomentumBased.swift (L638)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58968

Reviewed By: vincentqb

Differential Revision: D29310601

Pulled By: iramazanli

fbshipit-source-id: b7bd487f72f1074f266687fd9c0c6be264a748a9
2021-06-23 18:27:57 -07:00