This is a retry of https://github.com/pytorch/pytorch/pull/136594, which is having trouble landing.
Summary: We have an internal report of a Triton compiler error `ValueError: Cannot broadcast, rank mismatch: [1], [1, 2048]` coming from a line like this:
`tmp25 = tl.broadcast_to(((tl.full([1], 1.00000000000000, tl.float64)) + ((ks0 // 3278).to(tl.float64))) / (((tl.full([1], 0.500000000000000, tl.float64))*(libdevice.sqrt((1 + ((ks0 // 3278)*(ks0 // 3278)) + ((-2)*(ks0 // 3278))).to(tl.float64).to(tl.float32)))) + ((tl.full([1], 0.500000000000000, tl.float64))*((1 + (ks0 // 3278)).to(tl.float64)))), [XBLOCK, RBLOCK])`
https://github.com/pytorch/pytorch/pull/135260 is the cause, presumably because we turn a constant into a 1-element tensor with: `(tl.full([1], const, tl.float64))`. It looks like changing the syntax to `(tl.full([], const, tl.float64))` gives us what we want?
Differential Revision: [D63540693](https://our.internmc.facebook.com/intern/diff/D63540693)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136858
Approved by: https://github.com/atalman
Related issue: #125077
### Feature
Inductor tries to remove dimensions with stride 0 from block pointers. Rather than loading with stride 0, it's more efficient to load a smaller block pointer, then use `tl.broadcast_to` to broadcast it up to the desired size. This already worked for simpler block pointers, but it was disabled for more complex block pointers which used `tl.reshape` to change the dimensionality after loading.
This PR generalizes the approach to work for all block pointers. The idea is to first reshape, adding singleton dimensions, then broadcast those singletons up to something larger, then reshape again to the final output shape. For readability, we emit this code only if it actually does something. Simpler loads will just have `tl.load`.
Here's an example of a complicated kernel that uses `reshape` -> `load` -> `reshape`. (The first reshape is actually the slice `[None,None,:]`).
```
@triton.jit
def triton_(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 8)
tmp0 = tl.load(tl.make_block_ptr(in_ptr0, shape=[64], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), boundary_check=[0])
tmp1 = tl.reshape(tl.broadcast_to(tl.load(tl.make_block_ptr(in_ptr1, shape=[8], strides=[8], block_shape=[((7 + XBLOCK) // 8)], order=[0], offsets=[(xoffset // 8)]), boundary_check=[0], eviction_policy='evict_last')[:, None, None], [((7 + XBLOCK) // 8), ((1) * ((1) <= (((7 + XBLOCK) // 8))) + (((7 + XBLOCK) // 8)) * ((((7 + XBLOCK) // 8)) < (1))), ((8) * ((8) <= (XBLOCK)) + (XBLOCK) * ((XBLOCK) < (8)))]), [XBLOCK])
tmp2 = tmp0 + tmp1
tl.store(tl.make_block_ptr(out_ptr0, shape=[64], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tmp2.to(tl.float32), boundary_check=[0])
''', device_str='cuda')
```
Before this PR, we would have stride-0 dimensions:
```
@triton.jit
def triton_(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 8)
tmp0 = tl.load(tl.make_block_ptr(in_ptr0, shape=[64], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), boundary_check=[0])
tmp1 = tl.reshape(tl.load(tl.make_block_ptr(in_ptr1, shape=[8, 1, 8], strides=[8, 0, 0], block_shape=[((7 + XBLOCK) // 8), ((1) * ((1) <= (((7 + XBLOCK) // 8))) + (((7 + XBLOCK) // 8)) * ((((7 + XBLOCK) // 8)) < (1))), ((8) * ((8) <= (XBLOCK)) + (XBLOCK) * ((XBLOCK) < (8)))], order=[2, 1, 0], offsets=[(xoffset // 8), 0, xoffset % 8]), boundary_check=[0], eviction_policy='evict_last'), [XBLOCK])
tmp2 = tmp0 + tmp1
tl.store(tl.make_block_ptr(out_ptr0, shape=[64], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tl.broadcast_to(tmp2, [XBLOCK]).to(tl.float32), boundary_check=[0])
''', device_str='cuda')
```
Here's a simpler example where we use 2D tiling. In this case we don't actually need the broadcast. The broadcast is implied via a slice adding a new singleton dimension. This code is not changed by this PR, but it's important to know that we don't accidentally insert unnecessary broadcasts.
```
@triton.jit
def triton_(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(tl.make_block_ptr(in_ptr0, shape=[8, 8], strides=[1, 8], block_shape=[XBLOCK, YBLOCK], order=[1, 0], offsets=[xoffset, yoffset]), boundary_check=[0, 1])
tmp1 = tl.load(tl.make_block_ptr(in_ptr1, shape=[8], strides=[8], block_shape=[YBLOCK], order=[0], offsets=[yoffset]), boundary_check=[0], eviction_policy='evict_last')[None, :]
tmp2 = tmp0 + tmp1
tl.store(tl.make_block_ptr(out_ptr0, shape=[8, 8], strides=[1, 8], block_shape=[XBLOCK, YBLOCK], order=[1, 0], offsets=[xoffset, yoffset]), tmp2.to(tl.float32), boundary_check=[0, 1])
''', device_str='cuda')
```
### Test Plan
Added a new expecttest to check the emitted code for broadcast addition. Looking at the test, we can see that stride 0 dimensions are removed. (This test generated the example kernels in the previous section.)
This change also removed a stride-0 dimension in an existing block pointer test. I updated the expected code accordingly.
Bonus: I noticed that the test parametrization for `config.prefer_nd_tiling` wasn't working as intended. It ended up always setting this option to `True`. Fixed it so we get the intended test coverage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135557
Approved by: https://github.com/shunting314, https://github.com/jansel
Co-authored-by: Yueming Hao <yhao@meta.com>
Summary: We have an internal report of a Triton compiler error `ValueError: Cannot broadcast, rank mismatch: [1], [1, 2048]` coming from a line like this:
`tmp25 = tl.broadcast_to(((tl.full([1], 1.00000000000000, tl.float64)) + ((ks0 // 3278).to(tl.float64))) / (((tl.full([1], 0.500000000000000, tl.float64))*(libdevice.sqrt((1 + ((ks0 // 3278)*(ks0 // 3278)) + ((-2)*(ks0 // 3278))).to(tl.float64).to(tl.float32)))) + ((tl.full([1], 0.500000000000000, tl.float64))*((1 + (ks0 // 3278)).to(tl.float64)))), [XBLOCK, RBLOCK])
`
https://github.com/pytorch/pytorch/pull/135260 is the cause, presumably because we turn a constant into a 1-element tensor with: `(tl.full([1], const, tl.float64))`. It looks like changing the syntax to `(tl.full([], const, tl.float64))` gives us what we want?
Differential Revision: [D63465169](https://our.internmc.facebook.com/intern/diff/D63465169)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136594
Approved by: https://github.com/mengluy0125, https://github.com/jansel
AMD devices have 64 elements per thread; this PR makes the handling of the "ELEMENTS_PER_WARP_32" generic and uses DeviceProperties.warp_size to determine the warp size instead of hard-coding the warp size as 32. It also renames the enum value. Added a unit test for this.
Note: I left the old enum option (ELEMENTS_PER_WARP_32) as is instead of renaming it. I'm not sure whether we expect should caches to get invalidated here; if this concern is valid, then there's a risk that this would get updated, but some model could use the cached inductor code, which would reference "ELEMENTS_PER_WARP_32", which would no longer exist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136472
Approved by: https://github.com/jansel
Summary: Previous PR forgets to change two other places that also create `constants` and `signature`.
Test Plan:
Imported from GitHub, without a `Test Plan:` line.
{F1884584338}
Differential Revision: D63027728
Pulled By: Myrthan
Co-authored-by: Jokeren <robinho364@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136514
Approved by: https://github.com/jansel
Co-authored-by: Jokeren <robinho364@gmail.com>
Fixes#131337
- add `arg_type` for workspace_arg, the type is consistent with the type in `generate_workspace_allocation()`.
- do not generate example tensors for `workspace`, and use `generate_workspace_allocation()` instead.
- add workspace allocation generation code to `kernel_autotune_calls`. e.g.
```python
workspace = empty_strided_cuda((1280, ), (1, ), torch.uint8)
workspace.zero_()
.....
triton_spl_fused_add_cumprod_0.run(buf2, arg0_1, arg1_1, workspace, 1, 10000, grid=split_scan_grid(1, 10000), stream=stream0)
del buf2, arg0_1, arg1_1, workspace
```
- add `empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda` to the header of triton autotune code.
The generated cpp has lines like below, so we also implement a `zero_()` for ` AtenTensorHandle `.
```cpp
static constexpr int64_t int_array_0[] = {1280L, };
static constexpr int64_t int_array_1[] = {1L, };
AtenTensorHandle workspace_handle;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(1, int_array_0, int_array_1, cached_torch_dtype_uint8, cached_torch_device_type_cuda, 0, &workspace_handle));
RAIIAtenTensorHandle workspace(workspace_handle);
workspace.zero_();
```
- Fix handle grid_fn for grid computation. Pass in "RBLOCK" to `split_scan_grid`
- Fix dynamic shapes:
Without the fix we generate code that looks like this `workspace = empty_strided_cuda((32*((255 + s0) // 256), ), (1, ), torch.uint8)` when doing triton autotune and `s0` is not defined.
The solution approach is to use `V.graph.sizevars.size_hint(nbytes)` to realize the workspace size for triton autotune. Note that we only realize it for triton autotune code, but not for the cpp cuda code.
- We also generate slightly different cpp code depending on if `abi_compatible` is turned on.
```cpp
RAIIAtenTensorHandle workspace(workspace_handle);
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_zero_(workspace.get()));
```
vs
```cpp
at::Tensor workspace = at::detail::empty_strided_cuda({8L*(c10::div_floor_integer(static_cast<int64_t>((255L + s0)), static_cast<int64_t>(256L))), }, {1L, }, at::kByte, c10::DeviceType::CUDA);
workspace.zero_();
```
Test Plan:
```
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1 python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
python test/inductor/test_cuda_cpp_wrapper.py DynamicShapesCudaWrapperCudaTests.test_consecutive_split_cumprod_cuda_dynamic_shapes_cuda_wrapper
TORCHINDUCTOR_ABI_COMPATIBLE=1 python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
TORCHINDUCTOR_CPP_WRAPPER=1 python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135552
Approved by: https://github.com/desertfire
Fixes#131337
- add `arg_type` for workspace_arg, the type is consistent with the type in `generate_workspace_allocation()`.
- do not generate example tensors for `workspace`, and use `generate_workspace_allocation()` instead.
- add workspace allocation generation code to `kernel_autotune_calls`. e.g.
```python
workspace = empty_strided_cuda((1280, ), (1, ), torch.uint8)
workspace.zero_()
.....
triton_spl_fused_add_cumprod_0.run(buf2, arg0_1, arg1_1, workspace, 1, 10000, grid=split_scan_grid(1, 10000), stream=stream0)
del buf2, arg0_1, arg1_1, workspace
```
- add `empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda` to the header of triton autotune code.
The generated cpp has lines like below, so we also implement a `zero_()` for ` AtenTensorHandle `.
```cpp
static constexpr int64_t int_array_0[] = {1280L, };
static constexpr int64_t int_array_1[] = {1L, };
AtenTensorHandle workspace_handle;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(1, int_array_0, int_array_1, cached_torch_dtype_uint8, cached_torch_device_type_cuda, 0, &workspace_handle));
RAIIAtenTensorHandle workspace(workspace_handle);
workspace.zero_();
```
- Fix handle grid_fn for grid computation. Pass in "RBLOCK" to `split_scan_grid`
- Fix dynamic shapes:
Without the fix we generate code that looks like this `workspace = empty_strided_cuda((32*((255 + s0) // 256), ), (1, ), torch.uint8)` when doing triton autotune and `s0` is not defined.
The solution approach is to use `V.graph.sizevars.size_hint(nbytes)` to realize the workspace size for triton autotune. Note that we only realize it for triton autotune code, but not for the cpp cuda code.
- We also generate slightly different cpp code depending on if `abi_compatible` is turned on.
```cpp
RAIIAtenTensorHandle workspace(workspace_handle);
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_zero_(workspace.get()));
```
vs
```cpp
at::Tensor workspace = at::detail::empty_strided_cuda({8L*(c10::div_floor_integer(static_cast<int64_t>((255L + s0)), static_cast<int64_t>(256L))), }, {1L, }, at::kByte, c10::DeviceType::CUDA);
workspace.zero_();
```
Test Plan:
```
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1 python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
python test/inductor/test_cuda_cpp_wrapper.py DynamicShapesCudaWrapperCudaTests.test_consecutive_split_cumprod_cuda_dynamic_shapes_cuda_wrapper
TORCHINDUCTOR_ABI_COMPATIBLE=1 python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
TORCHINDUCTOR_CPP_WRAPPER=1 python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135552
Approved by: https://github.com/desertfire
When a kernel does not have mutated args (this is quite common?), benchmarking the cost of cloning actually benchmarks a no-op. This still takes >100ms since triton.testing.do_bench will allocate 100 ms budget to run the kernel.
Skipping this benchmarking can save quite some compilation time if the code path is hit multiple times. Let's say, if the code path is hit 100 times when the graph is large, we would save >10s.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135533
Approved by: https://github.com/jansel
ghstack dependencies: #135531
Fix https://github.com/pytorch/pytorch/issues/134768 .
When we benchmark the latency for a fused node set, we do benchmarking twice:
1. benchmark the latency of the kernel including cloning mutated args
2. benchmark the latency of cloning mutated args without running the kernel
We subtract result 2 from result 1 to get the latency of the kernel itself.
But when the tensors are not on the cuda device 0, we get equal number for result 1 and result 2 no matter how much work the kernel does. The root cause is, in `triton.testing.do_bench` the `torch.cuda.synchronize` call sync the current cuda device (which is device 0 if it's not overriden). But since the tensors and kernels are located on another device, the sync actually does nothing (unless there happens to be other kernels on the device 0).
The fix is to set the correct current device in our benchmarking code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135531
Approved by: https://github.com/jansel
SplitScan makes use of a workspace arg that needs to be zeroed before it is used - then, it is used to communicate between thread blocks during the triton kernel implementation. It is mutated during during the execution of the kernel, so it should be marked as such.
Before this PR, it is not marked as mutated; AFAIK this is fine during normal execution, but during autotuning it causes problems. The workspace starts off zeroed (as expected), but during autotuning the kernel will be executed multiple times and the workspace does not get re-set between executions, resulting in incorrect data. If the data is used for indexing, then you can fail device-side asserts (and the results after the initial run (with autotuning) could be wrong). The test added in this PR repros the issue when the fix is removed.
When we mark the arg as mutated, then the arg gets cloned before autotuning, so that the arg passed to the kernel during autotuning will always be zeroed as expected.
804852c1f9/torch/_inductor/runtime/triton_heuristics.py (L685-L689)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134648
Approved by: https://github.com/peterbell10, https://github.com/jansel
If the scalar tensor is an output tensor, it shouldn't be unwrapped (i.e. `.item()` called) since `tl.store` requires a pointer type for outputs. This issue only occurs for mutated buffers: the input tensor is also used as an output tensor.
Fixes #ISSUE_NUMBER
@yanboliang @jansel @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132859
Approved by: https://github.com/jansel
When I did profiling using the "TORCHINDUCTOR_PROFILE" option, some kernel shows less bandwidth than expected. So, added the option to exclude the CPU overheads from the profiling time:
```
# With the option:
(pytorch-3.10) [shuqiyangdevgpu001.lla3 ~/local/pytorch (gh/shunting314/144/head)]$ TORCHINDUCTOR_PROFILE=1 TORCHINDUCTOR_PROFILE_WITH_DO_BENCH_USING_PROFILING=1 TORCHINDUCTOR_PROFILE_OUTPUT=/tmp/profile.txt python ../test_pt/a.py
0.038ms 0.067 GB 1777.11GB/s triton_poi_fused__to_copy_clamp_clone_mul_0
SUMMARY (/tmp/torchinductor_shuqiyang/tmp03wdg8e4/m6/cm6vdqp62ofwsone3u3fmb42vs3fti5omseo3qn4ddh2bhalsvbn.py)
0.04ms 0.07 GB 1777.11GB/s
# Without the option:
(pytorch-3.10) [shuqiyangdevgpu001.lla3 ~/local/pytorch (gh/shunting314/144/head)]$ TORCHINDUCTOR_PROFILE=1 TORCHINDUCTOR_PROFILE_OUTPUT=/tmp/profile.txt python ../test_pt/a.py
0.040ms 0.067 GB 1663.09GB/s triton_poi_fused__to_copy_clamp_clone_mul_0
SUMMARY (/tmp/torchinductor_shuqiyang/tmpwr6rraao/s4/cs4npkh77myatwpcmsizyduyfm6ne6o4pg4n3eodejdvvg2j3xzd.py)
0.04ms 0.07 GB 1663.09GB/s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133523
Approved by: https://github.com/nmacchioni
Summary:
Follow up small diff to fix a couple issues:
- add condition for cuda/gpu case to only print kernel name list in the second pass i.e. when we do the cpp wrapper codegen
- other minor fixes around `AOT_INDUCTOR_FILTERED_KERNELS_TO_PRINT` option
Test Plan:
```
AOT_INDUCTOR_FILTERED_KERNELS_TO_PRINT="triton_poi_fused_0" AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER=1 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCH_COMPILE_DEBUG=1 TORCH_LOGS="+graph, inductor, +schedule, output_code" buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.nvcc_arch=h100 @//mode/opt fbcode//caffe2/test/inductor:test_aot_inductor -- -r test_addmm_abi_compatible_cuda
```
Differential Revision: D60954888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133016
Approved by: https://github.com/ColinPeppler
Reland by reverting commit 844103197d. #131675 failed a few internal tests because it imported a diff version which wasn't rebased on the proper dependent diffs. Reland from OSS only to avoid the out-of-sync issue.
Original description from #131675
Summary:
A ComboKernel combines independent Inductor Triton kernels into a single one.
This is part 2 pull request which 1) adds automatic horizontal fusion in the end of the inductor operator fusion process, 2) adds type annotation for trition_combo_kernel.py
ComboKernel is used in two cases: 1) for existing foreach kernels, combo kernels are used as the backend kernel. the front-end kernel generation logic remains the same. 2) Added an extra optimization phase to the end of the scheduler to generate extra combo kernels if combo_kernels is True in config.py
This is part 2 pull request which deals with the 2nd case above:
The combo kernel generation in the added optimization phase is done in two steps: 1) in the front end inside the scheduler, it topologically sort the schedule nodes to find all the nodes with no data dependency and create a frond end schedule node for them. We currently limit the maximal number of sub-nodes for each combo kernel to 8 (but we still need to find what is the optimal number). 2) then, these sub-nodes are combined in the codegen phase to generate the combo kernel code for them based on a few rules. For example, 1d and 2d kernels are separated into different combo kernels, as mixing them is not supported yet. Note these algorithms we provide are very basic, and the users can register their customized combo kernel generation algorithms for both steps.
Performance wise, combining small kernels is about always to see performance gain. however, combining very large kernels may not see any perf gain, sometimes even regression possibly due to improper block sizes. Thus, a benchmark function is implemented to avoid such perf regression, and it is recommended to turn it on by setting benchmark_combo_kernels to True whenever combo_kernels is True.
Please refer to part 1 pull request https://github.com/pytorch/pytorch/pull/124969 for more details.
Test Plan: buck2 test mode/dev-nosan caffe2/test/inductor:combo_kernels
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133291
Approved by: https://github.com/wdvr
Summary:
A ComboKernel combines independent Inductor Triton kernels into a single one.
This is part 2 pull request which 1) adds automatic horizontal fusion in the end of the inductor operator fusion process, 2) adds type annotation for trition_combo_kernel.py
ComboKernel is used in two cases: 1) for existing foreach kernels, combo kernels are used as the backend kernel. the front-end kernel generation logic remains the same. 2) Added an extra optimization phase to the end of the scheduler to generate extra combo kernels if combo_kernels is True in config.py
This is part 2 pull request which deals with the 2nd case above:
- The combo kernel generation in the added optimization phase is done in two steps: 1) in the front end inside the scheduler, it topologically sort the schedule nodes to find all the nodes with no data dependency and create a frond end schedule node for them. We currently limit the maximal number of sub-nodes for each combo kernel to 8 (but we still need to find what is the optimal number). 2) then, these sub-nodes are combined in the codegen phase to generate the combo kernel code for them based on a few rules. For example, 1d and 2d kernels are separated into different combo kernels, as mixing them is not supported yet. Note these algorithms we provide are very basic, and the users can register their customized combo kernel generation algorithms for both steps.
- Performance wise, combining small kernels is about always to see performance gain. however, combining very large kernels may not see any perf gain, sometimes even regression possibly due to improper block sizes. Thus, a benchmark function is implemented to avoid such perf regression, and it is recommended to turn it on by setting benchmark_combo_kernels to True whenever combo_kernels is True.
Please refer to part 1 pull request https://github.com/pytorch/pytorch/pull/124969 for more details.
Test Plan: buck2 test mode/dev-nosan caffe2/test/inductor:combo_kernels
Differential Revision: D60067757
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131675
Approved by: https://github.com/mlazos
Summary:
**Context:**
Currently we have a helper to print out AtenTensor in [shim_common.cpp](https://github.com/pytorch/pytorch/blob/v2.4.0-rc4/torch/csrc/inductor/aoti_torch/shim_common.cpp#L866)
The way we were using this function was a “manual” process. We inject this function into the generated output.cpp file, and recompile and reload the file. This diff automates the printing value process.
**Changes:**
1. Added a simple initial debug printer helper to print out tensor values
2. Added a filter option to selectively dump tensor values.
**Usage:**
Sample cmd :
```
AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER=1 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCH_COMPILE_DEBUG=1 TORCH_LOGS="+inductor, +schedule, output_code" python test/inductor/test_aot_inductor.py -k test_addmm_abi_compatible_cuda
```
Sample outputs :
```
[ before_launch - triton_poi_fused_0 - buf0 ]:
0.6331
1.6358
-0.3459
1.0196
-0.4122
1.4279
[ CUDAFloatType{6} ]
Min value: -0.412198
Max value: 1.63582
Device: cuda:0
Size: [6]
Stride: [1]
Dtype: float
Layout: Strided
Number of elements: 6
Is contiguous: 1
Requires grad: 0
[ after_launch - triton_poi_fused_0 - buf0 ]:
0.6331
1.6358
-0.3459
1.0196
-0.4122
1.4279
[ CUDAFloatType{6} ]
Min value: -0.412198
Max value: 1.63582
Device: cuda:0
Size: [6]
Stride: [1]
Dtype: float
Layout: Strided
Number of elements: 6
Is contiguous: 1
Requires grad: 0
[ before_launch - aoti_torch_cuda_addmm_out - buf1 ]:
Min value: -2.25655
Max value: 2.32996
Device: cuda:0
Size: [16, 6]
Stride: [6, 1]
Dtype: float
Layout: Strided
Number of elements: 96
Is contiguous: 1
Requires grad: 0
[ before_launch - aoti_torch_cuda_addmm_out - buf0 ]:
0.6331
1.6358
-0.3459
1.0196
-0.4122
1.4279
[ CUDAFloatType{6} ]
Min value: -0.412198
Max value: 1.63582
Device: cuda:0
Size: [6]
Stride: [1]
Dtype: float
Layout: Strided
Number of elements: 6
Is contiguous: 1
Requires grad: 0
[ after_launch - aoti_torch_cuda_addmm_out - buf1 ]:
Min value: -12.0839
Max value: 11.6878
Device: cuda:0
Size: [16, 6]
Stride: [6, 1]
Dtype: float
Layout: Strided
Number of elements: 96
Is contiguous: 1
Requires grad: 0
[ after_launch - aoti_torch_cuda_addmm_out - buf0 ]:
0.6331
1.6358
-0.3459
1.0196
-0.4122
1.4279
[ CUDAFloatType{6} ]
Min value: -0.412198
Max value: 1.63582
Device: cuda:0
Size: [6]
Stride: [1]
Dtype: float
Layout: Strided
Number of elements: 6
Is contiguous: 1
Requires grad: 0
stats [('calls_captured', 1), ('unique_graphs', 1)]
inductor [('pattern_matcher_count', 2), ('pattern_matcher_nodes', 2), ('extern_calls', 2)]
.
----------------------------------------------------------------------
Ran 1 test in 10.867s
OK
```
The user is able to filter kernel names to print out values by specifying env var `AOT_INDUCTOR_FILTERED_KERNELS_TO_PRINT` and see choices of kernel names in a log message like below:
```
torch/_inductor/graph.py:1642] Finished codegen for all nodes. The list of kernel names available: ['triton_poi_fused_0', 'aoti_torch_cuda_addmm_out']
```
In the follow-up diff, will add `torch.save()` to dump/save the intermediate tensors into individual `.pt` files that can be further `torch.load()`.
Test Plan:
Run Unit Tests in OSS: (similar cmd as mentioned above in the usage part)
`AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER=1 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCH_COMPILE_DEBUG=1 TORCH_LOGS="+inductor, output_code" python test/inductor/test_aot_inductor.py -k test_addmm_abi_compatible_cuda`
Differential Revision: D60538496
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132323
Approved by: https://github.com/ColinPeppler
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827
Approved by: https://github.com/eellison
Summary:
Reland #124969 by backing out D60397377 "Back out "[1/2] PT2 Inductor ComboKernels - Foreach cases (#124969)""
The original diff D54134695 was reverted because of failure of ads nightly cogwheel tests.
The root cause: the logic for generating mask in Triton kernel needed update after a recent refactoring on triton.py. This diff includes the fix of the root cause.
See D54134695 or #124969 for more details.
Test Plan:
Originally failed tests
f585704630
f585733786
Diff patched:
f586664028
f586663820
Differential Revision: D60458597
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132182
Approved by: https://github.com/Yuzhen11
Python's set is non deterministic. There is an internal failure which we recently ran into which did not consistently fail.
See, repro here: P1453035092.
Now, with these changes, it does consistently fail. In follow ups we could also consider adding a lintrule for uses of either set() or set literals.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130004
Approved by: https://github.com/oulgen
This fixes a few instances where we assumed indexing expressions were
non-negative. This is not valid when we have more complicated
expressions involving masking e.g. pointwise cat.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131761
Approved by: https://github.com/ezyang
Python's set is non deterministic. There is an internal failure which we recently ran into which did not consistently fail.
See, repro here: P1453035092.
Now, with these changes, it does consistently fail. In follow ups we could also consider adding a lintrule for uses of either set() or set literals.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130004
Approved by: https://github.com/oulgen
```
# Mode to emulate pytorch eager numerics for lower precision (fp16, bf16)
# Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after
# For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts
# Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging
# to emulate the eager numerics.
```
We add extra upcasts and downcasts for pointwise nodes that correspond to casts that existed in the original user program (excluding pointwise nodes that are emitted during decomposition). Since this is mostly for debugging, I added this information in the `meta` so that this mode does not have unintended side effects like changing pattern matching.
in theory there could also be some other casts with fused reduction -> reduction, although i havent seen this in practice as much. could be done as follow up. note: only works with cuda backend right now.
This mode was sufficient to eliminate compile differences from https://fb.workplace.com/groups/385893200869952/posts/464263173032954/?comment_id=465199259606012&reply_comment_id=465676792891592.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131595
Approved by: https://github.com/shunting314, https://github.com/bdhirsh, https://github.com/jansel
This fixes a few instances where we assumed indexing expressions were
non-negative. This is not valid when we have more complicated
expressions involving masking e.g. pointwise cat.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131761
Approved by: https://github.com/ezyang