Commit Graph

6 Commits

Author SHA1 Message Date
mal
6b656565ab Hooks for C++ API (#24393)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24393

Ability to register hook on a variable, similar to python autograd API. register_hook will take a function as argument and create a CppFunctionPreHook similar to PyFunctionPreHook.
It will return the index of the hook which can be passed to remove_hook to disable the hook.

Test Plan: Added tests.

Differential Revision: D16861722

fbshipit-source-id: d08047f932e38c7bde04283a18b2d0311c8ad604
2019-08-16 12:44:20 -07:00
mal
ec13f18390 Allow empty Variables to be saved for backwards (#23618)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23618

For example: `save_for_backward({Variable(), x, Variable()})` should be allowed, so that this is consistent with the python API behaviour.

Test Plan: Added a test similar to the python test `test_save_none_for_backward` from test_autograd.py.

Differential Revision: D16589402

fbshipit-source-id: 847544ad8fc10772954d8629ad5a62bfdc1a66c1
2019-07-31 19:51:35 -07:00
mal
3fa2df7c9a Support custom autograd functions in C++ (#23572)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23572

### **(The stack from #23020  was moved into this PR)**

Adding API for custom autograd operations, with user defined forward and backward, [like in python](https://pytorch.org/docs/stable/notes/extending.html#extending-torch-autograd).

The custom operation should be a subclass of Function, with static forward and backward functions. `forward()` can accept any arguments similar to the Python API and `backward()` should accept a variable list as an argument.

Both `forward()` and `backward() `accept a AutogradContext* which can be used to share data between them.
Variables can be saved in the context using `save_for_backward()` and other data can be saved in the map `save` in the form of `<std::string, at::IValue>` pairs. Variables saved in forward can be accessed with `get_saved_variables()`.

Example usage:
```
class MyFunction : public Function<MyFunction> {
  public:
  static variable_list forward(AutogradContext *ctx, int n, Variable var) {
     // Save data for backward in context
     ctx->saved_data["n"] = n;
     return {var};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_output) {
     // Use data saved in forward
     auto n = ctx->saved_data["n"].toInt();
     return {grad_output[0]*n};
  }
};

```
Then, it can be used with:
```
Variable x;
MyFunction::apply(6, x);
```

Also AutogradContext has methods to mark outputs as non differentiable and mark inputs as dirty similar to the [Python API](ff23a02ac4/torch/autograd/function.py (L26)).

Test Plan: Added tests for the custom autograd function API based on test_autograd.py. Currently only the tests for the basic functionality have been added. More tests will be added later.

Differential Revision: D16583428

fbshipit-source-id: 0bd42f19ce37bcd99d3080d16195ad74d40d0413
2019-07-31 11:30:48 -07:00
mal
e7a9b0d62f Rename torch::autograd::Function to torch::autograd::Node
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23269

Test Plan: Imported from OSS

Differential Revision: D16454878

fbshipit-source-id: b1e840fc2d3901955280d141e5ad6efd5e9d66af
2019-07-23 20:52:22 -07:00
mal
44493a623e Pass variable_list of inputs to _wrap_outputs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23037

Test Plan: Imported from OSS

Differential Revision: D16380071

fbshipit-source-id: ae3333c02ef8a3c09b95bec7b8e92ce649553615
2019-07-19 12:31:23 -07:00
mal
58e20638f7 Refactoring _wrap_outputs to remove python dependence.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22631

Test Plan:
test suite

Imported from OSS

Differential Revision: D16185040

fbshipit-source-id: 9b83749f6c9cd05d13f54a3bb4801e263293252b
2019-07-10 12:12:16 -07:00