@fegin found an issue where torchft is not compatible with functional collectives.
Found in https://github.com/pytorch/torchtitan/pull/806
The root cause is because PyProcessGroup/PyWork are not compatible with functional collectives due to a nasty ownership bug.
PyWork relies on a pybind trampoline to propagate requests to Python unfortunately the way Pybind works is that the Python object owns the C++ object rather than some form of shared ownership. Thus what happens is that the PyWork Python object will collected when returned to C++ from the PyProcessGroup but the C++ PyWork object still exists. When the PyWork object is used, this causes a deadlock as the corresponding Python object no longer exists
To solve this, we introduce a new `PyWorkHolder` class which holds a reference to the `py::object` as well as the trampoline class. This resolves any dependency issues since we can now hold ownership in C++ to both the Python and C++ objects.
To make this cleaner we introduce a `WORK_OVERRIDE` macro which is a patched version of `PYBIND11_OVERRIDE` that returns a `PyWorkHolder` rather than just `PyWork` and use for all collectives in PyProcessGroup.
Test plan:
```
cd pytorch
pytest test/distributed/test_c10d_functional_native.py
```
```
cd torchft
pytest torchft/process_group_test.py -k functional -v -x -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146376
Approved by: https://github.com/yifuwang
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
Summary:
This PR is basically a replacement of
https://github.com/pytorch/pytorch/pull/140087, which caused some perf
drop due to frequent TCPStore check in watchdog thread. The fix is to move the
tcpstore check in monitoring thread
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.
This API is applied to PG level, compared to the
work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle
the PG failure as a whole, e.g, restarting the PG.
Error handling at the work level is still useful for users to attach
work specific context and debug the RC of the specific failing
work/collective
Note it is critical for all ranks in the PG to be notified about an
error as soon as it occurs, so we introduce an errorType of
REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a
local error) to all other ranks in the PG, the broadcast is done through
TCPStore currently
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144498
Approved by: https://github.com/kwen2501
`py::call_guard<py::gil_scoped_release>` is not safe when using multiple threads. This instead moves it into the init function which is safe.
For more details see #143593https://github.com/pybind/pybind11/issues/5473
Test plan:
```
python setup.py develop
```
CI
```py
import time
from concurrent.futures import ThreadPoolExecutor
from torch import distributed as dist
def run():
store = dist.TCPStore(
host_name="localhost",
port=0,
is_master=True,
wait_for_workers=False,
)
# this sleep is required to trigger the crash
time.sleep(0.1)
del store
futures = []
with ThreadPoolExecutor(
max_workers=100,
) as executor:
for i in range(100000):
print(i)
futures.append(executor.submit(run))
if len(futures) > 100:
futures.pop(0).result()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143598
Approved by: https://github.com/c-p-i-o
### Motivation:
As design illustrated in Intel distributed support RFC https://github.com/pytorch/pytorch/issues/141741, two sections are needed to enable intel distributed backend (`XCCL`) support in PyTorch.
1. Intel GPU distributed Backend integration in PyTorch `torch-xpu-ops`.
2. **Intel distributed Backend register in PyTorch distributed package**. This PR is to contribute section 2 change.
### Example:
Here is a simple example of using spawn to launch XCCL backend and perform allreduce on XPU tensors.
```
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def run_allreduce(rank, world_size):
setup(rank, world_size)
device = torch.device('xpu:{}'.format(rank))
x = torch.randn([2, 2], device=device)
dist.all_reduce(x)
cleanup()
if __name__ == '__main__':
world_size = 2
mp.spawn(run_allreduce, args=(world_size,), nprocs=world_size, join=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141856
Approved by: https://github.com/kwen2501, https://github.com/gujinghui, https://github.com/albanD
Doc updates:
* This adds documentation for the object oriented ProcessGroup APIs that are being used in torchft as well as https://github.com/pytorch/rfcs/pull/71 .
* It also does some general cleanups to simplify the distributed.rst by using `:methods`.
* It adds `__init__` definitions for the Stores
* I've reordered things so the collective APIs are before the Store/PG apis
Test plan:
```
lintrunner -a
cd docs && sphinx-autobuild source build/ -j auto -WT --keep-going
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140853
Approved by: https://github.com/kwen2501
Before this PR, users need to call `empty_strided_p2p()` with a `group_name`:
```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device, group_name="0")
symm_mem = _SymmetricMemory.rendezvous(tensor)
```
Users can now omit `group_name` at allocation time and specify it later at rendezvous time:
```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device)
symm_mem = _SymmetricMemory.rendezvous(tensor, group_name="0")
```
Rationales for this change:
- This allows the same allocation to establish symmetric memory under different groups
- Specifying `group_name` at rendezvous time instead of allocation time is a more natural UX
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139529
Approved by: https://github.com/lw
Summary:
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.
This API is applied to PG level, compared to the work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle the PG failure as a whole, e.g, restarting the PG.
Error handling at the work level is still useful for users to attach work specific context and debug the RC of the specific failing work/collective
Note it is critical for all ranks in the PG to be notified about an error as soon as it occurs, so we introduce an errorType of REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a local error) to all other ranks in the PG, the broadcast is done through TCPStore currently
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140087
Approved by: https://github.com/kwen2501
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
1. My company is using privateuseone to connect new hardware device and requires the use of `batch_isend_irecv` function. However, `batch_isend_irecv` is currently only open to CUDA, so I add `supports_coalescing` property in `c10d::Backend` to determine whether backend supports coalescing.
2. If `pg._has_hooks` return True, We don't need to determine if the current device is CUDA. So privateuseone can also support `pg._wait_for_pending_works`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135338
Approved by: https://github.com/kwen2501
## This Stack
This stack does the following things to support `xformers`-style, comm-aware Triton kernels:
- Exposes `signal_pad`s as tensors in Python
- Adds a binding for `cuMemsetAsync`
These in combination aims to provide users with more flexibility to express custom signaling/synchronization patterns.
## This PR
Make `cuMemset32Async` available via `_SymmetricMemory.memset32`. We chose `cuMemset32Async` over `cudaMemsetAsync` because it allows for `uint32_t`-wise memset. This provides users with better flexibility.
To enable this, we also added the following cuda driver APIs in `c10::cuda::DriverAPI`:
- `cuDevicePrimaryCtxRetain` - for obtaining the primary context of a device in the form of `CUcontext`.
- `cuCtxGetCurrent`/`cuCtxSetCurrent` - for setting and restoring the context for cuda driver APIs such as `cuMemset32Async`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138755
Approved by: https://github.com/weifengpy, https://github.com/eqy, https://github.com/lw
## This Stack
This stack does the following things to support `xformers`-style, comm-aware Triton kernels:
- Exposes `signal_pad`s as tensors in Python
- Adds a binding for `cuMemsetAsync`
These in combination aims to provide users with more flexibility to express custom signaling/synchronization patterns.
## This PR
Make `cuMemset32Async` available via `_SymmetricMemory.memset32`. We chose `cuMemset32Async` over `cudaMemsetAsync` because it allows for `uint32_t`-wise memset. This provides users with better flexibility.
To enable this, we also added the following cuda driver APIs in `c10::cuda::DriverAPI`:
- `cuDevicePrimaryCtxRetain` - for obtaining the primary context of a device in the form of `CUcontext`.
- `cuCtxGetCurrent`/`cuCtxSetCurrent` - for setting and restoring the context for cuda driver APIs such as `cuMemset32Async`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138755
Approved by: https://github.com/weifengpy, https://github.com/eqy, https://github.com/lw
## This Stack
This stack does the following things to support `xformers`-style, comm-aware Triton kernels:
- Exposes `signal_pad`s as tensors in Python
- Adds a binding for `cuMemsetAsync`
These in combination aims to provide users with more flexibility to express custom signaling/synchronization patterns.
## This PR
```python
# Obtain the signal pad of the specified peer rank as a tensor.
# If both shape and dtype are unspecified, the returned tensor will be a
# 1d uint32 tensor, which is most natural for signaling purposes.
symm_mem.get_signal_pad(peer_rank)
# If only shape is specified, it is equivalent to:
# symm_mem.get_signal_pad(peer_rank)[:shape.numel()].view(shape)
symm_mem.get_signal_pad(peer_rank, shape)
# If only dtype is specified, it is equivalent to:
# symm_mem.get_signal_pad(peer_rank).view(dtype)
symm_mem.get_signal_pad(peer_rank, dtype=dtype)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138754
Approved by: https://github.com/weifengpy, https://github.com/lw
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
y = x * x
req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(req, torch.distributed.Work)
return y
@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
torch.ops.c10d_functional.wait_tensor(y)
return y * y
x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
y = all_reduce_eager(x)
z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.
This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.
----
**Update**: Did two items to prevent regression to existing use cases:
1. Added memory-stressed test case to test_c10d_nccl.py `test_unwaited` to cover existing user's "not calling work.wait() for non-functional collective" use case
2. Gated all new `register_work()` / `unregister_work()` calls with `c10d::allow_inflight_collective_as_graph_input()` check, which is a new context manager that requires explicit user enablement (i.e. not on by default, so should not affect existing users).
The risk of this new version of PR causing regression should be very low.
------
Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`
------
Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang