Fixes#166253
## Summary
When `torch.full` is called with a 0-D tensor as `fill_value` inside a `torch.compile`'d function, the value was being incorrectly cached, causing subsequent calls with different values to return the first value.
## Root Cause
The Dynamo handler for `torch.full` was calling `aten._local_scalar_dense` to convert tensor fill_values to Python scalars at compile time, which baked the value into the compiled graph as a constant.
## Solution
Modified the Dynamo handler to decompose `torch.full(size, tensor_fill_value)` into `empty(size).fill_(tensor_fill_value)` when `fill_value` is a `TensorVariable`, keeping the fill value dynamic in the compiled graph.
## Testing
Added test case that verifies torch.full works correctly with dynamic tensor fill_values across multiple calls and dtypes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166554
Approved by: https://github.com/Lucaskabela
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
# Description
Fixes#114850, we will port dynamo tests to Intel GPU
We could enable Intel GPU with following methods and try the best to keep the original code styles:
# Changes
1. Get device type from accelerator method.
2. Replace the requires cuda statement with requires_gpu.
3. Add HAS_XPU_AND_TRITON into the scope.
4. Add several wrapper methods in cuda module into the accelerator.
# Notify
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160953
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/jansel
Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
I had to create a new PR for this because of @atalman request of temporary reverting the previous PR to restore diff train sync. Nothing has changed from this PR and the original one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156639
Approved by: https://github.com/atalman
This PR refers to the issue: https://github.com/pytorch/pytorch/issues/155352
This PR uses torch._dynamo.utils.warn_once so that this warning only emits once, clarifies in the warning that silent incorrectness is potential, not observed, Doesn't warn for functions that come from torch.*
As of right now with this code change the terminal outputs:
if the code came from torch.* :
Nothing, as we shouldn't warn for functions that come from torch.*
else:
/data/users/ssubbarao8/pytorch/torch/_dynamo/variables/functions.py:1565: UserWarning: Dynamo detected a call to a `functools.lru_cache`-wrapped function. Dynamo ignores the cache wrapper and directly traces the wrapped function. Silent incorrectness is only a *potential* risk, not something we have observed. Enable TORCH_LOGS="+dynamo" for a DEBUG stack trace.
torch._dynamo.utils.warn_once(msg)
If the user runs the command 'TORCH_LOGS="+dynamo" python foo4.py', in the debug logs it shows(this log below is based on chillee's repro:
/data/users/ssubbarao8/pytorch/torch/_dynamo/variables/functions.py:1565: UserWarning: Dynamo detected a call to a `functools.lru_cache`-wrapped function. Dynamo ignores the cache wrapper and directly traces the wrapped function. Silent incorrectness is only a *potential* risk, not something we have observed. Enable TORCH_LOGS="+dynamo" for a DEBUG stack trace.
torch._dynamo.utils.warn_once(msg)
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0] call to a lru_cache` wrapped function from user code at: /data/users/ssubbarao8/pytorch/foo4.py:9
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0] File "/data/users/ssubbarao8/pytorch/foo4.py", line 9, in <module>
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0] torch.compile(foo, backend="eager")(torch.randn(4))
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156463
Approved by: https://github.com/williamwen42
Fixes#129673
### Summary:
Modifying a tensor by reshaping in place (such as `unsqueeze_`) should cause a graph break; however, when accessed through `torch.Tensor` api as opposed to as self attribute caused the code to crash with an error (see attached issue)
Paths differed when traced due to the stack variable popped, as:
* `self.unsqueeze_` pops a `LazyVariableTracker` which gets resolved to `TensorVariable`, so when looking for the method, triggers the fn call `var_getattr` in `_dynamo/variables/tensor.py`; since this is an inplace view (metadata mutation) on graph input, it is not well supported so should fall back (see [L446](1017927c83/torch/_dynamo/variables/tensor.py (L446)) in that file)
* `torch.Tensor.unsqueeze` pops a `UserDefinedClassVariable` so when looking for the method, triggers the fn call `var_getattr` in `_dynamo/variables/user_defined.py` on [L273](a8f6b40e36/torch/_dynamo/variables/user_defined.py (L273)). This path tries to build a variable tracker from the obj popped, which resolves to a trace_rule , and as a Tensor method, is resolved to `TorchInGraphFunctionVariable` on [L3767](a8f6b40e36/torch/_dynamo/trace_rules.py (L3767))
So, one straightforward option is to check if the fn is an inplace_view on a input tensor in `torch.py` when we resolve the `__call__function` for the `TorchInGraphFunctionVariable` instead, which resolves the bug by providing a graph break
### Test
```
pytest test/dynamo/test_functions.py::FunctionTests::test_unsqueeze_inplace
```
Results in
```
Running 1 items in this shard
test/dynamo/test_functions.py . [100%]
=========================================================================================== 1 passed in 9.16s ==========================================================================================
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150573
Approved by: https://github.com/anijain2305
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows
Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic
Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....
Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.
We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka