Commit Graph

398 Commits

Author SHA1 Message Date
cyyever
636a7c4859 [13/N] Use std::optional (#132527)
Follows #132361

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132527
Approved by: https://github.com/ezyang
2024-08-08 03:16:28 +00:00
Sun, Jiayi
4faa0e3efb [Inductor] support masked vectorization for the tail_loop (#126526)
Currently the tail_loop always uses the scalar kernel. This PR supports masked vectorization for the tail_loop to improve the performance.

Example:
```
import torch
import torch.nn as nn

class GN(nn.Module):
    def __init__(self, num_groups, num_channels):
        super(GN, self).__init__()
        self.gn = nn.GroupNorm(num_groups, num_channels)

    def forward(self, x):
        return self.gn(x)

input = torch.randn(2, 960, 96, 96).to(memory_format=torch.channels_last)
m = GN(32, 960).eval()
compiled_m = torch.compile(m)

with torch.no_grad():
    for _ in range(3):
        compiled_m(input)

```

Generated code:
- Before:
```
cpp_fused_native_group_norm_0 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*'], '''
#include "/tmp/torchinductor_jiayisun/ky/cky2bufythacofebk7ujv36e4pxyqcqbpsy5r4vojoprjiwcwfxf.h"
extern "C"  void kernel(const float* in_ptr0,
                       const float* in_ptr1,
                       const float* in_ptr2,
                       float* out_ptr0,
                       float* out_ptr1,
                       float* out_ptr2)
{
    #pragma omp parallel num_threads(112)
    {
        int tid = omp_get_thread_num();
        {
            #pragma omp for collapse(2)
            for(long x0=static_cast<long>(0L); x0<static_cast<long>(2L); x0+=static_cast<long>(1L))
            {
                for(long x1=static_cast<long>(0L); x1<static_cast<long>(32L); x1+=static_cast<long>(1L))
                {
                    {
                        Welford<float> tmp_acc0 = Welford<float>();
                        Welford<at::vec::Vectorized<float>> tmp_acc0_vec = Welford<at::vec::Vectorized<float>>();
                        static WeightRecp<at::vec::Vectorized<float>> weight_recps(static_cast<long>(17280L));
                        for(long x2=static_cast<long>(0L); x2<static_cast<long>(9216L); x2+=static_cast<long>(1L))
                        {
                            for(long x3=static_cast<long>(0L); x3<static_cast<long>(16L); x3+=static_cast<long>(16L))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x3 + (30L*x1) + (960L*x2) + (8847360L*x0)), 16);
                                tmp_acc0_vec = welford_combine(tmp_acc0_vec, tmp0, &weight_recps);
                            }
                            #pragma omp simd simdlen(8)
                            for(long x3=static_cast<long>(16L); x3<static_cast<long>(30L); x3+=static_cast<long>(1L))
                            {
                                auto tmp0 = in_ptr0[static_cast<long>(x3 + (30L*x1) + (960L*x2) + (8847360L*x0))];
                                tmp_acc0 = welford_combine(tmp_acc0, tmp0);
                            }
                        }
                        tmp_acc0 = welford_combine(tmp_acc0, welford_vec_reduce_all(tmp_acc0_vec));
                        out_ptr0[static_cast<long>(x1 + (32L*x0))] = static_cast<float>(tmp_acc0.mean);
                        out_ptr1[static_cast<long>(x1 + (32L*x0))] = static_cast<float>(tmp_acc0.m2);
                    }
                }
            }
        }
        {
            #pragma omp for collapse(2)
            for(long x0=static_cast<long>(0L); x0<static_cast<long>(2L); x0+=static_cast<long>(1L))
            {
                for(long x1=static_cast<long>(0L); x1<static_cast<long>(9216L); x1+=static_cast<long>(1L))
                {
                    for(long x2=static_cast<long>(0L); x2<static_cast<long>(960L); x2+=static_cast<long>(16L))
                    {
                        auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x2 + (960L*x1) + (8847360L*x0)), 16);
                        auto tmp1 =
                        [&]
                        {
                            __at_align__ std::array<float, 16> tmpbuf;
                            #pragma GCC unroll 16
                            for (long x2_inner = 0; x2_inner < 16; x2_inner++)
                            {
                                tmpbuf[x2_inner] = out_ptr0[static_cast<long>((32L*x0) + (c10::div_floor_integer((x2 + x2_inner), 30L)))];
                            }
                            return at::vec::Vectorized<float>::loadu(tmpbuf.data(), 16);
                        }
                        ()
                        ;
                        auto tmp3 =
                        [&]
                        {
                            __at_align__ std::array<float, 16> tmpbuf;
                            #pragma GCC unroll 16
                            for (long x2_inner = 0; x2_inner < 16; x2_inner++)
                            {
                                tmpbuf[x2_inner] = out_ptr1[static_cast<long>((32L*x0) + (c10::div_floor_integer((x2 + x2_inner), 30L)))];
                            }
                            return at::vec::Vectorized<float>::loadu(tmpbuf.data(), 16);
                        }
                        ()
                        ;
                        auto tmp12 = at::vec::Vectorized<float>::loadu(in_ptr1 + static_cast<long>(x2), 16);
                        auto tmp14 = at::vec::Vectorized<float>::loadu(in_ptr2 + static_cast<long>(x2), 16);
                        auto tmp2 = tmp0 - tmp1;
                        auto tmp4 = static_cast<float>(276480.0);
                        auto tmp5 = at::vec::Vectorized<float>(tmp4);
                        auto tmp6 = tmp3 / tmp5;
                        auto tmp7 = static_cast<float>(1e-05);
                        auto tmp8 = at::vec::Vectorized<float>(tmp7);
                        auto tmp9 = tmp6 + tmp8;
                        auto tmp10 = tmp9.rsqrt();
                        auto tmp11 = tmp2 * tmp10;
                        auto tmp13 = tmp11 * tmp12;
                        auto tmp15 = tmp13 + tmp14;
                        tmp15.store(out_ptr2 + static_cast<long>(x2 + (960L*x1) + (8847360L*x0)));
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

def call(args):
    arg0_1, arg1_1, arg2_1 = args
    args.clear()
    assert_size_stride(arg0_1, (960, ), (1, ))
    assert_size_stride(arg1_1, (960, ), (1, ))
    assert_size_stride(arg2_1, (2, 960, 96, 96), (8847360, 1, 92160, 960))
    buf0 = empty_strided_cpu((2, 32, 1, 1), (32, 1, 64, 64), torch.float32)
    buf1 = empty_strided_cpu((2, 32, 1, 1), (32, 1, 64, 64), torch.float32)
    buf3 = empty_strided_cpu((2, 960, 96, 96), (8847360, 1, 92160, 960), torch.float32)
    cpp_fused_native_group_norm_0(arg2_1, arg0_1, arg1_1, buf0, buf1, buf3)
    del arg0_1
    del arg1_1
    del arg2_1
    return (buf3, )
```

- After:
```
cpp_fused_native_group_norm_0 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*'], '''
#include "/tmp/torchinductor_jiayisun/em/cemtujj65j5txpqlxc7w4pcunpmvz3qtiudkc5ocxxhcmdlknw2m.h"
extern "C"  void kernel(const float* in_ptr0,
                       const float* in_ptr1,
                       const float* in_ptr2,
                       float* out_ptr0,
                       float* out_ptr1,
                       float* out_ptr2)
{
    #pragma omp parallel num_threads(112)
    {
        int tid = omp_get_thread_num();
        {
            #pragma omp for collapse(2)
            for(long x0=static_cast<long>(0L); x0<static_cast<long>(2L); x0+=static_cast<long>(1L))
            {
                for(long x1=static_cast<long>(0L); x1<static_cast<long>(32L); x1+=static_cast<long>(1L))
                {
                    {
                        Welford<float> tmp_acc0 = Welford<float>();
                        Welford<at::vec::Vectorized<float>> tmp_acc0_vec = Welford<at::vec::Vectorized<float>>();
                        Welford<at::vec::Vectorized<float>> masked_tmp_acc0_vec = Welford<at::vec::Vectorized<float>>();
                        static WeightRecp<at::vec::Vectorized<float>> wrecps0(static_cast<long>(17280L));
                        for(long x2=static_cast<long>(0L); x2<static_cast<long>(9216L); x2+=static_cast<long>(1L))
                        {
                            for(long x3=static_cast<long>(0L); x3<static_cast<long>(16L); x3+=static_cast<long>(16L))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x3 + (30L*x1) + (960L*x2) + (8847360L*x0)), 16);
                                tmp_acc0_vec = welford_combine(tmp_acc0_vec, tmp0, &wrecps0);
                            }
                            for(long x3=static_cast<long>(16L); x3<static_cast<long>(30L); x3+=static_cast<long>(14L))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x3 + (30L*x1) + (960L*x2) + (8847360L*x0)), 14);
                                masked_tmp_acc0_vec = welford_combine(masked_tmp_acc0_vec, tmp0, 14, &wrecps0);
                            }
                        }
                        tmp_acc0 = welford_combine(tmp_acc0, welford_vec_reduce_all(masked_tmp_acc0_vec));
                        tmp_acc0 = welford_combine(tmp_acc0, welford_vec_reduce_all(tmp_acc0_vec));
                        out_ptr0[static_cast<long>(x1 + (32L*x0))] = static_cast<float>(tmp_acc0.mean);
                        out_ptr1[static_cast<long>(x1 + (32L*x0))] = static_cast<float>(tmp_acc0.m2);
                    }
                }
            }
        }
        {
            #pragma omp for collapse(2)
            for(long x0=static_cast<long>(0L); x0<static_cast<long>(2L); x0+=static_cast<long>(1L))
            {
                for(long x1=static_cast<long>(0L); x1<static_cast<long>(9216L); x1+=static_cast<long>(1L))
                {
                    for(long x2=static_cast<long>(0L); x2<static_cast<long>(960L); x2+=static_cast<long>(16L))
                    {
                        auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x2 + (960L*x1) + (8847360L*x0)), 16);
                        auto tmp1 =
                        [&]
                        {
                            __at_align__ std::array<float, 16> tmpbuf;
                            #pragma GCC unroll 16
                            for (long x2_inner = 0; x2_inner < 16; x2_inner++)
                            {
                                tmpbuf[x2_inner] = out_ptr0[static_cast<long>((32L*x0) + (c10::div_floor_integer((x2 + x2_inner), 30L)))];
                            }
                            return at::vec::Vectorized<float>::loadu(tmpbuf.data(), 16);
                        }
                        ()
                        ;
                        auto tmp3 =
                        [&]
                        {
                            __at_align__ std::array<float, 16> tmpbuf;
                            #pragma GCC unroll 16
                            for (long x2_inner = 0; x2_inner < 16; x2_inner++)
                            {
                                tmpbuf[x2_inner] = out_ptr1[static_cast<long>((32L*x0) + (c10::div_floor_integer((x2 + x2_inner), 30L)))];
                            }
                            return at::vec::Vectorized<float>::loadu(tmpbuf.data(), 16);
                        }
                        ()
                        ;
                        auto tmp12 = at::vec::Vectorized<float>::loadu(in_ptr1 + static_cast<long>(x2), 16);
                        auto tmp14 = at::vec::Vectorized<float>::loadu(in_ptr2 + static_cast<long>(x2), 16);
                        auto tmp2 = tmp0 - tmp1;
                        auto tmp4 = static_cast<float>(276480.0);
                        auto tmp5 = at::vec::Vectorized<float>(tmp4);
                        auto tmp6 = tmp3 / tmp5;
                        auto tmp7 = static_cast<float>(1e-05);
                        auto tmp8 = at::vec::Vectorized<float>(tmp7);
                        auto tmp9 = tmp6 + tmp8;
                        auto tmp10 = tmp9.rsqrt();
                        auto tmp11 = tmp2 * tmp10;
                        auto tmp13 = tmp11 * tmp12;
                        auto tmp15 = tmp13 + tmp14;
                        tmp15.store(out_ptr2 + static_cast<long>(x2 + (960L*x1) + (8847360L*x0)));
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

def call(args):
    arg0_1, arg1_1, arg2_1 = args
    args.clear()
    assert_size_stride(arg0_1, (960, ), (1, ))
    assert_size_stride(arg1_1, (960, ), (1, ))
    assert_size_stride(arg2_1, (2, 960, 96, 96), (8847360, 1, 92160, 960))
    buf0 = empty_strided_cpu((2, 32, 1, 1), (32, 1, 64, 64), torch.float32)
    buf1 = empty_strided_cpu((2, 32, 1, 1), (32, 1, 64, 64), torch.float32)
    buf3 = empty_strided_cpu((2, 960, 96, 96), (8847360, 1, 92160, 960), torch.float32)
    cpp_fused_native_group_norm_0(arg2_1, arg0_1, arg1_1, buf0, buf1, buf3)
    del arg0_1
    del arg1_1
    del arg2_1
    return (buf3, )
```

Co-authored-by: CaoE <e.cao@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126526
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-07 06:00:12 +00:00
Xu Han
1e65ccc3de [inductor] export kernel for gemm template. (#132580)
Changes:
1. Move `get_export_declaration` to global scope.
2. Export kernel for gemm template.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132580
Approved by: https://github.com/ezyang
2024-08-06 18:52:22 +00:00
PyTorch MergeBot
7100c36c8a Revert "[inductor] export kernel for gemm template. (#132580)"
This reverts commit 87d46d70d7.

Reverted https://github.com/pytorch/pytorch/pull/132580 on behalf of https://github.com/PaliC due to sys is not defined in torch/_inductor/codegen/cpp_utils.py ([comment](https://github.com/pytorch/pytorch/pull/132580#issuecomment-2271264974))
2024-08-06 13:15:15 +00:00
haozhe.zhu
96471ea47c [inductor] support vectorization for torch.any(bool) -> bool (#132472)
Support reduction `any` by from `bool` to `bool`.
TestPlan:
```
python test/inductor/test_cpu_repro.py -k test_any_bool_vec
```

Generated code for `test_any_bool_vec`
```
cpp_fused_any_0 = async_compile.cpp_pybinding(['const float*', 'const float*', 'bool*', 'bool*'], '''
#include "/tmp/torchinductor_root/ky/cky2bufythacofebk7ujv36e4pxyqcqbpsy5r4vojoprjiwcwfxf.h"
extern "C"  void kernel(const float* in_ptr0,
                       const float* in_ptr1,
                       bool* out_ptr0,
                       bool* out_ptr1)
{
    {
        {
            bool tmp_acc0 = 0;
            at::vec::VecMask<float,1> tmp_acc0_vec = at::vec::VecMask<float,1>::from(0);
            bool tmp_acc0_arr[64];
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_arr[tid] = 0;
            }
            at::vec::VecMask<float,1> tmp_acc0_vec_arr[64];
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_vec_arr[tid] = at::vec::VecMask<float,1>::from(0);
            }
            #pragma omp parallel num_threads(64)
            {
                int tid = omp_get_thread_num();
                bool tmp_acc0_local = 0;
                at::vec::VecMask<float,1> tmp_acc0_vec_local = at::vec::VecMask<float,1>::from(0);
                #pragma omp for
                for(long x0=static_cast<long>(0L); x0<static_cast<long>(64L); x0+=static_cast<long>(16L))
                {
                    auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(x0), 16);
                    auto tmp1 = at::vec::VecMask<float,1>::from<float,1>(tmp0);
                    tmp_acc0_vec_local = tmp_acc0_vec_local | tmp1;
                }
                tmp_acc0_arr[tid] = tmp_acc0_local;
                tmp_acc0_vec_arr[tid] = tmp_acc0_vec_local;
            }
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0 = tmp_acc0 || tmp_acc0_arr[tid];
            }
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_vec = tmp_acc0_vec | tmp_acc0_vec_arr[tid];
            }
            tmp_acc0 = tmp_acc0 || at::vec::vec_reduce_all<bool>([](at::vec::Vectorized<bool>& x, at::vec::Vectorized<bool>& y) { return x | y; }, tmp_acc0_vec.to<bool, 1>());
            out_ptr0[static_cast<long>(0L)] = static_cast<bool>(tmp_acc0);
        }
    }
    {
        {
            bool tmp_acc0 = 0;
            at::vec::VecMask<float,1> tmp_acc0_vec = at::vec::VecMask<float,1>::from(0);
            bool tmp_acc0_arr[64];
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_arr[tid] = 0;
            }
            at::vec::VecMask<float,1> tmp_acc0_vec_arr[64];
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_vec_arr[tid] = at::vec::VecMask<float,1>::from(0);
            }
            #pragma omp parallel num_threads(64)
            {
                int tid = omp_get_thread_num();
                bool tmp_acc0_local = 0;
                at::vec::VecMask<float,1> tmp_acc0_vec_local = at::vec::VecMask<float,1>::from(0);
                #pragma omp for
                for(long x0=static_cast<long>(0L); x0<static_cast<long>(64L); x0+=static_cast<long>(16L))
                {
                    auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr1 + static_cast<long>(x0), 16);
                    auto tmp1 = at::vec::VecMask<float,1>::from<float,1>(tmp0);
                    tmp_acc0_vec_local = tmp_acc0_vec_local | tmp1;
                }
                tmp_acc0_arr[tid] = tmp_acc0_local;
                tmp_acc0_vec_arr[tid] = tmp_acc0_vec_local;
            }
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0 = tmp_acc0 || tmp_acc0_arr[tid];
            }
            for (int tid = 0; tid < 64; tid++)
            {
                tmp_acc0_vec = tmp_acc0_vec | tmp_acc0_vec_arr[tid];
            }
            tmp_acc0 = tmp_acc0 || at::vec::vec_reduce_all<bool>([](at::vec::Vectorized<bool>& x, at::vec::Vectorized<bool>& y) { return x | y; }, tmp_acc0_vec.to<bool, 1>());
            out_ptr1[static_cast<long>(0L)] = static_cast<bool>(tmp_acc0);
        }
    }
}
''')
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132472
Approved by: https://github.com/jgong5
2024-08-06 01:03:51 +00:00
haozhe.zhu
ae44b8f410 [inductor] support vectorization for torch.argmax/min(float/int64_t)-> int64_t (#131016)
Support reduction argmin/max by scalar implementation.
TestPlan:
```
python test/inductor/test_cpu_repro.py -k test_argmax_argmin_with_nan_value
python test/inductor/test_cpu_repro.py -k test_argmin
python test/inductor/test_cpu_repro.py -k test_reduction_cpu_only
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131016
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-08-05 04:31:53 +00:00
Xu Han
87d46d70d7 [inductor] export kernel for gemm template. (#132580)
Changes:
1. Move `get_export_declaration` to `cpp_utils.py` as basic function.
2. Export kernel for gemm template.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132580
Approved by: https://github.com/ezyang
2024-08-04 11:17:19 +00:00
CaoE
6ec4af6865 [Inductor][CPP] Add vectorization support for double (#131886)
Before:
```
extern "C"  void kernel(const double* in_ptr0, double* out_ptr0)
{
     #pragma omp parallel num_threads(112)
     {
         int tid = omp_get_thread_num();
         {
             #pragma omp for
             for(long x0=static_cast<long>(0L); x0<static_cast<long>(1024L); x0+=static_cast<long>(1L))
             {
                 auto tmp0 = in_ptr0[static_cast<long>(x0)];
                 auto tmp1 = decltype(tmp0)(tmp0 * tmp0);
                 out_ptr0[static_cast<long>(x0)] = tmp1;
             }
         }
     }
 }
```

After:
```
extern "C"  void kernel(const double* in_ptr0, double* out_ptr0)
{
    #pragma omp parallel num_threads(112)
    {
        int tid = omp_get_thread_num();
        {
            #pragma omp for
            for(long x0=static_cast<long>(0L); x0<static_cast<long>(1024L); x0+=static_cast<long>(16L))
            {
                auto tmp0 = at::vec::VectorizedN<double,2>::loadu(in_ptr0 + static_cast<long>(x0), 16);
                auto tmp1 = tmp0 * tmp0;
                tmp1.store(out_ptr0 + static_cast<long>(x0), 16);
            }
        }
    }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131886
Approved by: https://github.com/jgong5, https://github.com/peterbell10
2024-08-04 02:13:21 +00:00
Xu Han
a4013e8b72 [inductor] cpp codegen alignas for all OSs. (#132387)
Changes:
1. Make cpp codegen alignas works for all OSs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132387
Approved by: https://github.com/jgong5, https://github.com/desertfire
2024-08-01 14:30:09 +00:00
Xu Han
aa1488fe02 [inductor] turn on enable_kernel_profile on Windows. (#132025)
Enable `TORCHINDUCTOR_CPP_ENABLE_KERNEL_PROFILE` on Windows inductor.

Local tested pass:
![image](https://github.com/user-attachments/assets/a82351af-cc56-4ba1-a8f4-08f1c38713d1)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132025
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-07-30 03:02:09 +00:00
leslie-fang-intel
f8e4060484 [Inductor][CPP] Enhance cppcsevar data type deduce (#130827)
**Summary**
Previously, we used `data_type_propagation` at the start of `codegen` to deduce the data type of each node and save this information in `node.meta[OptimizationContext.key]`. Then, we used this node metadata to update the cppcsevar data type in `update_on_args`. However, this method is not always correct. For example, in the codegen of `indirect_indexing` (see [here](096dc444ce/torch/_inductor/codegen/common.py (L1844))), we insert nodes on the fly and reuse the node of `indirect_indexing` to set the `cppcsevar` data type. In this PR, we plan to enhance the `cppcsevar` data type deduction:

- We will deduce the `cppcsevar` data type in `update_on_args` by reusing the code in `data_type_propagation`.

- To align the data type of scalar and vector variables, we previously always cast the scalar to the vector's data type. This caused a data type misalignment between `codegen` and `data_type_propagation`. We should use the same data type promotion logic to align the data types of scalar and vector variables.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130827
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-07-30 02:51:31 +00:00
eellison
8b507a922a Mode to emulate amp numerics (#131595)
```
# Mode to emulate pytorch eager numerics for lower precision (fp16, bf16)
# Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after
# For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts
# Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging
# to emulate the eager numerics.
```

We add extra upcasts and downcasts for pointwise nodes that correspond to casts that existed in the original user program (excluding pointwise nodes that are emitted during decomposition). Since this is mostly for debugging, I added this information in the `meta` so that this mode does not have unintended side effects like changing pattern matching.

in theory there could also be some other casts with fused reduction -> reduction, although i havent seen this in practice as much. could be done as follow up. note: only works with cuda backend right now.

This mode was sufficient to eliminate compile differences from https://fb.workplace.com/groups/385893200869952/posts/464263173032954/?comment_id=465199259606012&reply_comment_id=465676792891592.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131595
Approved by: https://github.com/shunting314, https://github.com/bdhirsh, https://github.com/jansel
2024-07-29 22:42:23 +00:00
PyTorch MergeBot
945bf78894 Revert "[BE] typing for decorators - fx/_compatibility (#131568)"
This reverts commit 193f62fde9.

Reverted https://github.com/pytorch/pytorch/pull/131568 on behalf of https://github.com/clee2000 due to same as https://github.com/pytorch/pytorch/pull/131572#issuecomment-2254328359 but I clicked the wrong link by accident.  This is where it actually starts ([comment](https://github.com/pytorch/pytorch/pull/131568#issuecomment-2254330781))
2024-07-28 03:43:39 +00:00
Aaron Orenstein
193f62fde9 [BE] typing for decorators - fx/_compatibility (#131568)
See #131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131568
Approved by: https://github.com/justinchuby, https://github.com/oulgen, https://github.com/zou3519
2024-07-25 22:24:19 +00:00
eellison
5772c13f56 Dont wrap negative indexing in scatter reduce (#131503)
Fix for https://github.com/pytorch/pytorch/issues/131321

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131503
Approved by: https://github.com/shunting314
2024-07-24 04:01:32 +00:00
Xuehai Pan
b6d477fd56 [BE][Easy][16/19] enforce style for empty lines in import segments in torch/_i*/ (#129768)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129768
Approved by: https://github.com/jansel
2024-07-20 16:20:58 +00:00
Peter Bell
27c2a0d63b [inductor] Separate Buffer and Operation into two concepts (#130831)
Resubmit of #128893

Currently a buffer represents both a tensor with physical storage and a
computation that produces the tensor as a result.

This PR attempts to split these into two different concepts in the scheduler.
This should allow us to have multiple outputs from a single operation.

Differential Revision: [D59876059](https://our.internmc.facebook.com/intern/diff/D59876059)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130831
Approved by: https://github.com/lezcano
2024-07-20 02:05:07 +00:00
Isuru Fernando
b7d2abd766 Fix vectorized ops.masked (#130130)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130130
Approved by: https://github.com/jgong5, https://github.com/lezcano
2024-07-17 14:55:11 +00:00
Jiong Gong
705da70f2c [inductor][cpp] align dtype convert cache between vec and scalar kernels (#130677)
The conversion cache used for fixing https://github.com/pytorch/pytorch/issues/115260 depended on "store" which might be removed and ignored. This would lead to inconsistent code generated between vec and scalar kernels since we generate scalar kernel first followed by the vector kernel and the store buffer might be removed by the scalar and impacts the vector kernel codegen. This PR move the caching from "store" to the "to_dtype" calls which won't be impacted by the removed buffers.

`pytest -k test_consistent_remove_buffers test/inductor/test_cpu_repro.py`

before
```c++
extern "C"  void kernel(const bfloat16* in_ptr0,
                       bfloat16* out_ptr1)
{
    {
        for(long x0=static_cast<long>(0L); x0<static_cast<long>(64L); x0+=static_cast<long>(16L))
        {
            auto tmp0 = at::vec::Vectorized<bfloat16>::loadu(in_ptr0 + static_cast<long>(x0), 16);
            auto tmp1 = at::vec::convert<float>(tmp0);
            auto tmp2 = tmp1 + tmp1;
            auto tmp3 = at::vec::convert<bfloat16>(tmp2);
            auto tmp4 = at::vec::convert<float>(tmp3);
            auto tmp5 = tmp1 + tmp4;
            auto tmp6 = at::vec::convert<bfloat16>(tmp5);
            tmp6.store(out_ptr1 + static_cast<long>(x0), 16);
        }
        #pragma omp simd simdlen(8)
        for(long x0=static_cast<long>(64L); x0<static_cast<long>(65L); x0+=static_cast<long>(1L))
        {
            auto tmp0 = in_ptr0[static_cast<long>(x0)];
            auto tmp1 = c10::convert<float>(tmp0);
            auto tmp2 = decltype(tmp1)(tmp1 + tmp1);
            auto tmp3 = c10::convert<bfloat16>(tmp2);
            auto tmp4 = decltype(tmp1)(tmp1 + tmp2);
            auto tmp5 = c10::convert<bfloat16>(tmp4);
            out_ptr1[static_cast<long>(x0)] = tmp5;
        }
    }
}
```

after
```c++
extern "C"  void kernel(const bfloat16* in_ptr0,
                       bfloat16* out_ptr1)
{
    {
        for(long x0=static_cast<long>(0L); x0<static_cast<long>(64L); x0+=static_cast<long>(16L))
        {
            auto tmp0 = at::vec::Vectorized<bfloat16>::loadu(in_ptr0 + static_cast<long>(x0), 16);
            auto tmp1 = at::vec::convert<float>(tmp0);
            auto tmp2 = tmp1 + tmp1;
            auto tmp3 = at::vec::convert<bfloat16>(tmp2);
            auto tmp4 = tmp1 + tmp2;
            auto tmp5 = at::vec::convert<bfloat16>(tmp4);
            tmp5.store(out_ptr1 + static_cast<long>(x0), 16);
        }
        #pragma omp simd simdlen(8)
        for(long x0=static_cast<long>(64L); x0<static_cast<long>(65L); x0+=static_cast<long>(1L))
        {
            auto tmp0 = in_ptr0[static_cast<long>(x0)];
            auto tmp1 = c10::convert<float>(tmp0);
            auto tmp2 = decltype(tmp1)(tmp1 + tmp1);
            auto tmp3 = c10::convert<bfloat16>(tmp2);
            auto tmp4 = decltype(tmp1)(tmp1 + tmp2);
            auto tmp5 = c10::convert<bfloat16>(tmp4);
            out_ptr1[static_cast<long>(x0)] = tmp5;
        }
    }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130677
Approved by: https://github.com/leslie-fang-intel
2024-07-16 13:25:05 +00:00
leslie-fang-intel
81322aee74 [Inductor][CPP] Support more than one LocalBuffer (#129121)
**Summary**
Support more than 1 Local Buffer in an outer loop fused node and also the case when multi global buffers sharing usage of same local buffer.

**TestPlan**
```
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_two_local_buffers_in_outer_loop_fusion
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_share_local_buffers_in_outer_loop_fusion
```

**Next Step**

- [✓] Support more than one Local Buffer/Global Buffer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129121
Approved by: https://github.com/jgong5, https://github.com/peterbell10
ghstack dependencies: #126967
2024-07-14 11:31:14 +00:00
leslie-fang-intel
adaa0fea5a [Inductor][CPP] Enable Local Buffer for Outer loop fusion (#126967)
**Summary**
Currently, the Inductor CPP backend [generated code](https://gist.github.com/leslie-fang-intel/98f91d43dabed581a1ffe23daf133a65#file-bf16-softmax-generated-code-wo-local-buffer-py) for `Softmax` with BF16 data type is significantly slower than the [ATen Implementation](9a2beb862d/aten/src/ATen/native/cpu/SoftMaxKernel.cpp (L149)). Upon comparing the generated code with ATen, the performance bottleneck appears to be related to the usage of [local buffer in ATen](9a2beb862d/aten/src/ATen/native/cpu/SoftMaxKernel.cpp (L159-L160)).

In the current implementation, the Inductor uses the output buffer of Kernel Group Args to store and load temporary result (such as `exp`), since this buffer is corresponding to a `SchedulerNode`. Each thread accesses a portion of this output buffer via indexing. However, since this buffer (take this `exp` as example) is only utilized internally within decomposed `softmax`, this buffer can be replaced with a thread-local buffer similar to ATen's approach.

In this PR, we have introduced the optimizations of `LocalBuffer`. Following this enhancement, the [new generated Inductor code with local buffer](https://gist.github.com/leslie-fang-intel/98f91d43dabed581a1ffe23daf133a65#file-bf16-softmax-generated-code-w-local-buffer-py) for BF16 `Softmax` demonstrates significantly improved performance. Running the benchmark [here](https://gist.github.com/leslie-fang-intel/37d81441237b5139c8295f5e6c4cd31a) to test this BF16 `Softmax` case on an 8480 Xeon server shows similar performance between the Inductor CPP Backend and the ATen implementation.

**TestPlan**
```
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_local_buffer_in_outer_loop_fusion
```

**Next Step**

- [ ] Support more than one Local Buffer/Global Buffer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126967
Approved by: https://github.com/jgong5, https://github.com/peterbell10
2024-07-14 11:28:10 +00:00
PyTorch MergeBot
1f162a5fce Revert "[Inductor][CPP] Support vectorization of remainder (#129849)"
This reverts commit 5bc18ec0a1.

Reverted https://github.com/pytorch/pytorch/pull/129849 on behalf of https://github.com/izaitsevfb due to fails the compilation of executorch benchmark internally ([comment](https://github.com/pytorch/pytorch/pull/129849#issuecomment-2227054413))
2024-07-13 19:28:34 +00:00
leslie-fang-intel
5bc18ec0a1 [Inductor][CPP] Support vectorization of remainder (#129849)
**Summary**
When check the vectorization status among 3 test suit, we found some operators disabled vectorization with message `Disabled vectorization: op: remainder`. In this PR, we add vectorization support of this op.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_vec_remainder
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_int_div_vec
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129849
Approved by: https://github.com/jgong5, https://github.com/lezcano
ghstack dependencies: #130405
2024-07-11 00:50:50 +00:00
Richard Zou
edf273edf4 Revert some PRs (#130303)
Summary:
Revert https://github.com/pytorch/pytorch/pull/129346 thru
https://github.com/pytorch/pytorch/pull/128893

For S430832

Test Plan: Tests

Differential Revision: D59503843

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130303
Approved by: https://github.com/bdhirsh
2024-07-09 14:46:00 +00:00
PyTorch MergeBot
e423224546 Revert "[Inductor][CPP] Enable Local Buffer for Outer loop fusion (#126967)"
This reverts commit 98929ceae3.

Reverted https://github.com/pytorch/pytorch/pull/126967 on behalf of https://github.com/leslie-fang-intel due to Broken trunk and need rebase ([comment](https://github.com/pytorch/pytorch/pull/126967#issuecomment-2212337926))
2024-07-07 06:16:32 +00:00
PyTorch MergeBot
1b57dce35f Revert "[Inductor][CPP] Support more than one LocalBuffer (#129121)"
This reverts commit f794cf59bd.

Reverted https://github.com/pytorch/pytorch/pull/129121 on behalf of https://github.com/leslie-fang-intel due to Broken trunk and need rebase ([comment](https://github.com/pytorch/pytorch/pull/129121#issuecomment-2212337590))
2024-07-07 06:13:40 +00:00
leslie-fang-intel
f794cf59bd [Inductor][CPP] Support more than one LocalBuffer (#129121)
**Summary**
Support more than 1 Local Buffer in an outer loop fused node and also the case when multi global buffers sharing usage of same local buffer.

**TestPlan**
```
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_two_local_buffers_in_outer_loop_fusion
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_share_local_buffers_in_outer_loop_fusion
```

**Next Step**

- [✓] Support more than one Local Buffer/Global Buffer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129121
Approved by: https://github.com/jgong5, https://github.com/peterbell10
ghstack dependencies: #126967
2024-07-07 05:43:08 +00:00
leslie-fang-intel
98929ceae3 [Inductor][CPP] Enable Local Buffer for Outer loop fusion (#126967)
**Summary**
Currently, the Inductor CPP backend [generated code](https://gist.github.com/leslie-fang-intel/98f91d43dabed581a1ffe23daf133a65#file-bf16-softmax-generated-code-wo-local-buffer-py) for `Softmax` with BF16 data type is significantly slower than the [ATen Implementation](9a2beb862d/aten/src/ATen/native/cpu/SoftMaxKernel.cpp (L149)). Upon comparing the generated code with ATen, the performance bottleneck appears to be related to the usage of [local buffer in ATen](9a2beb862d/aten/src/ATen/native/cpu/SoftMaxKernel.cpp (L159-L160)).

In the current implementation, the Inductor uses the output buffer of Kernel Group Args to store and load temporary result (such as `exp`), since this buffer is corresponding to a `SchedulerNode`. Each thread accesses a portion of this output buffer via indexing. However, since this buffer (take this `exp` as example) is only utilized internally within decomposed `softmax`, this buffer can be replaced with a thread-local buffer similar to ATen's approach.

In this PR, we have introduced the optimizations of `LocalBuffer`. Following this enhancement, the [new generated Inductor code with local buffer](https://gist.github.com/leslie-fang-intel/98f91d43dabed581a1ffe23daf133a65#file-bf16-softmax-generated-code-w-local-buffer-py) for BF16 `Softmax` demonstrates significantly improved performance. Running the benchmark [here](https://gist.github.com/leslie-fang-intel/37d81441237b5139c8295f5e6c4cd31a) to test this BF16 `Softmax` case on an 8480 Xeon server shows similar performance between the Inductor CPP Backend and the ATen implementation.

**TestPlan**
```
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_local_buffer_in_outer_loop_fusion
```

**Next Step**

- [ ] Support more than one Local Buffer/Global Buffer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126967
Approved by: https://github.com/jgong5, https://github.com/peterbell10
2024-07-07 05:34:57 +00:00
Jason Ansel
4fc9157e90 [halide-backend] Disable split reductions for Halide (#129320)
In theory Halide doesn't need the split reduction stuff we do for Triton since it can generate multiple kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129320
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #129321
2024-07-03 05:56:40 +00:00
Peter Bell
fb078c20c1 [inductor] Separate Buffer and Operation into two concepts (#128893)
Currently a buffer represents both a tensor with physical storage and a
computation that produces the tensor as a result.

This PR attempts to split these into two different concepts in the scheduler.
This should allow us to have multiple outputs from a single operation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128893
Approved by: https://github.com/lezcano
2024-07-02 23:49:57 +00:00
Xu Han
567dd1a3ca [inductor] unificate toolchain code. (#129816)
This PR is the implemention of https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902 plan 2, and it is continued PR to https://github.com/pytorch/pytorch/pull/129789

Changes:
1. Unificate cpp builder's toolchain code.
2. Move all build related code to `cpp_builder.py`.
3. Optimize `codecache.py`, `cpp_builder.py` and `cpu_vec_isa.py` import logical follow: https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129816
Approved by: https://github.com/jansel
2024-07-02 09:52:06 +00:00
Xu Han
76259ebfdd [inductor] split cpu vec isa to dedicate file (keep git history) (#129789)
This PR is the implemention of https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902 plan 1

Changes:
1. Duplicate `codecache.py` to `cpu_vec_isa.py` with its `git history`.
<img width="745" alt="image" src="https://github.com/pytorch/pytorch/assets/8433590/106533da-ce80-4825-8271-35ffb3141f92">

2. Make `cpu_vec_isa.py` as dedicate file for CPU vec isa. It also good to extend for more archtectures and vec isa.
3. Update code for above changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129789
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-07-02 05:29:05 +00:00
PyTorch MergeBot
19e17216a2 Revert "[inductor] split cpu vec isa to dedicate file (keep git history) (#129789)"
This reverts commit 58f346c874.

Reverted https://github.com/pytorch/pytorch/pull/129789 on behalf of https://github.com/jeanschmidt due to Need to revert in order to revert https://github.com/pytorch/pytorch/pull/129577 ([comment](https://github.com/pytorch/pytorch/pull/129789#issuecomment-2200545144))
2024-07-01 16:08:44 +00:00
PyTorch MergeBot
b6dc37bb4e Revert "[inductor] unificate toolchain code. (#129816)"
This reverts commit 67c9ec2b6d.

Reverted https://github.com/pytorch/pytorch/pull/129816 on behalf of https://github.com/jeanschmidt due to Need to revert in order to revert #129577 ([comment](https://github.com/pytorch/pytorch/pull/129816#issuecomment-2200539687))
2024-07-01 16:06:22 +00:00
PyTorch MergeBot
e385bf8ef8 Revert "[halide-backend] Disable split reductions for Halide (#129320)"
This reverts commit a18eb651d3.

Reverted https://github.com/pytorch/pytorch/pull/129320 on behalf of https://github.com/jeanschmidt due to This PR is breaking internal builds, please check comments on it D59204360 ([comment](https://github.com/pytorch/pytorch/pull/129320#issuecomment-2200351678))
2024-07-01 14:44:35 +00:00
Xu Han
67c9ec2b6d [inductor] unificate toolchain code. (#129816)
This PR is the implemention of https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902 plan 2, and it is continued PR to https://github.com/pytorch/pytorch/pull/129789

Changes:
1. Unificate cpp builder's toolchain code.
2. Move all build related code to `cpp_builder.py`.
3. Optimize `codecache.py`, `cpp_builder.py` and `cpu_vec_isa.py` import logical follow: https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129816
Approved by: https://github.com/jansel
2024-06-29 23:21:13 +00:00
leslie-fang-intel
3fec0efd34 [Inductor][CPP] Support vectorization of bitwise fn (#129733)
**Summary**
When check the vectorization status among 3 test suit, we found some operators disabled vectorization with message `Disabled vectorization: op: bitwise_and`. In this PR, we add vectorization support of 6 bitwise functions.

In this PR, we also remove `bitwise_xor` from `ops_to_bool` list which sets output data type as bool in data type propagation. It seems wrong since according to this doc
https://pytorch.org/docs/stable/generated/torch.bitwise_xor.html, it should return the same integral data type with input and the testcase `test_bitwise3` failed due to this issue.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_vec_bitwise
python -u -m pytest -s -v test/inductor/test_torchinductor.py -k test_bitwise3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129733
Approved by: https://github.com/jgong5, https://github.com/Skylion007
2024-06-29 17:25:27 +00:00
Jason Ansel
a18eb651d3 [halide-backend] Disable split reductions for Halide (#129320)
In theory Halide doesn't need the split reduction stuff we do for Triton since it can generate multiple kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129320
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417, #129025, #129026, #127506, #129036
2024-06-29 14:06:28 +00:00
Xu Han
58f346c874 [inductor] split cpu vec isa to dedicate file (keep git history) (#129789)
This PR is the implemention of https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902 plan 1

Changes:
1. Duplicate `codecache.py` to `cpu_vec_isa.py` with its `git history`.
<img width="745" alt="image" src="https://github.com/pytorch/pytorch/assets/8433590/106533da-ce80-4825-8271-35ffb3141f92">

2. Make `cpu_vec_isa.py` as dedicate file for CPU vec isa. It also good to extend for more archtectures and vec isa.
3. Update code for above changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129789
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-06-29 07:19:54 +00:00
Xu Han
bafd68b4fc [inductor] fix windows python module ext and func export declaration (#129059)
I have run the first inductor case on Windows base on the exploration code: https://github.com/pytorch/pytorch/pull/128330
Due to some fundamental PR still need pass `fb_code`: https://github.com/pytorch/pytorch/pull/128303
This PR would land some part of exploration code:
1. Fix Windows python module ext type: pyd.
2. Add function export declaration for Windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129059
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-06-19 17:51:32 +00:00
leslie-fang-intel
c35ffaf954 [Inductor][CPP] Add ne with VecMask (#126940)
**Summary**
Fix https://github.com/pytorch/pytorch/issues/126824#issuecomment-2125039161 which is missing the support of `ne` with `VecMask`.

**Test Plan**
```
python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_ne_cpu_bool
```

Co-authored-by: Isuru Fernando <ifernando@quansight.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126940
Approved by: https://github.com/isuruf, https://github.com/jgong5, https://github.com/peterbell10
ghstack dependencies: #126841
2024-06-18 00:23:03 +00:00
leslie-fang-intel
beb29836cd [Inductor][CPP] Add Min/Max with VecMask (#126841)
**Summary**
Fix issue: https://github.com/pytorch/pytorch/issues/126824 which is missing the support of `min/max` with `VecMask`.

**TestPlan**
```
python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_clamp_max_cpu_bool
python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_clamp_min_cpu_bool
```

Co-authored-by: Isuru Fernando <ifernando@quansight.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126841
Approved by: https://github.com/isuruf, https://github.com/jgong5, https://github.com/peterbell10
2024-06-18 00:20:32 +00:00
leslie-fang-intel
f8d60e0e0a [Inductor][CPP] Fix Half data type cse cache issue for CPP Backend (#128498)
**Summary**
Fixing issue: https://github.com/pytorch/pytorch/issues/128263. After https://github.com/pytorch/pytorch/issues/115260, we cached the higher precision cse variable to avoid duplicate casting between buffers. However, it failed to check the original data type. This means if we convert `int32` to `bf16` for `store` and then convert `bf16` back to `fp32` for `load`, it would incorrectly hit the cache and reuse the `int32` cse var. This PR fixes the issue.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_issue_128263
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128498
Approved by: https://github.com/jgong5, https://github.com/zhuhaozhe, https://github.com/jerryzh168
2024-06-16 11:27:13 +00:00
Jiong Gong
1fd2cd26a0 [inductor][cpp] support bf16/fp16 gemm template epilogue fusion (#126545)
As part of #125683, this PR adds epilogue fusion support for bf16/fp16 gemms. The key changes are as follows:
1. bf16 linear w/ epilogue fusion of some ops was originally supported via ATen oneDNN linear pointwise ops. In order to match the ATen op semantics, in-template epilogue support is added to the cpp gemm template so that we would have: "gemm + in-template epilogues -> template buffer". If the template is chosen for codegen, the in-template epilogues will be concatenated with the out-of-template epilogues that are appended during the scheduling.
2. Support bf16/fp16 legalization for `codegen_loop_bodies` which is used to generate the epilogue loops.
3. We used to leverage the in-place buffer mechanism to handle the in-place buffers in the epilogue codegen, in particular, for the reuses for output buffers of GEMM, template and epilogues. This is not correct since the output buffer is an "output" not an "in-place" buffer of the template kernel itself. Now, we use a dedicated "aliases" dict to manage such buffer reuses and the intermediate aliasing buffers are removed after codegen.
4. Add `localize_buffer` method to `LocalBufferScope` to allow the replacement of a global buffer with a local one in the given inductor IR nodes. This helps the fused loops to work on smaller-sized local buffers for better data locality.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126545
Approved by: https://github.com/jansel
2024-06-13 09:46:22 +00:00
Jason Ansel
c897651392 [inductor] Add BackendFeature gating (#128266)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128266
Approved by: https://github.com/shunting314
2024-06-13 07:31:51 +00:00
Jiong Gong
1edcb31d34 [RELAND][inductor][cpp] bf16/fp16 gemm template computed with fp32 (#128472)
reland for https://github.com/pytorch/pytorch/pull/126068

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128472
Approved by: https://github.com/desertfire
2024-06-12 08:37:16 +00:00
Edward Z. Yang
3964a3ec73 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/

It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-09 06:20:25 +00:00
Aaron Orenstein
ea614fb2b1 Flip default value for mypy disallow_untyped_defs [2/11] (#127839)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127839
Approved by: https://github.com/oulgen
2024-06-08 18:23:08 +00:00
PyTorch MergeBot
ac51f782fe Revert "Complete revamp of float/promotion sympy handling (#126905)"
This reverts commit 2f7cfecd86.

Reverted https://github.com/pytorch/pytorch/pull/126905 on behalf of https://github.com/atalman due to Sorry need to revert - failing internally ([comment](https://github.com/pytorch/pytorch/pull/126905#issuecomment-2155118778))
2024-06-07 16:01:46 +00:00
Edward Z. Yang
2f7cfecd86 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-06 02:29:45 +00:00