Commit Graph

82 Commits

Author SHA1 Message Date
lezcano
612c8a8c84 Guard numpy imports in the dynamo folder (#107299)
Fixes https://github.com/pytorch/pytorch/issues/107228

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107299
Approved by: https://github.com/atalman
2023-08-21 19:07:20 +00:00
lezcano
a9dca53438 NumPy support in torch.compile (#106211)
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/

We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.

In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.

Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.

All the tests in `tests/torch_np` take about 75s to run.

This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
2023-08-11 00:39:32 +00:00
Yukio Siraichi
e514386315 Normalize builtin types to dtypes. (#106074)
Fix: #105052
Follow-up: #105588

This PR normalizes builtin Python types (e.g. `int` and `float`) into PyTorch data types
when these are passed as argument, instead of used as functions.

In summary, we:

- Implement `BuiltinVariable.as_proxy`, mapping Python types into PyTorch data types

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106074
Approved by: https://github.com/ezyang, https://github.com/lezcano
2023-08-01 13:32:19 +00:00
Elias Ellison
76a2ec49d7 [Dynamo] Ignore no-op tensor assignment (#106092)
Ignore no-op `self.attr = self.attr` on NN Modules when attr is a Tensor attribute.

This comes from a [llama pattern](https://github.com/pytorch/benchmark/blob/main/torchbenchmark/models/llama/model.py#L121-L122). Normally, when a set attr occurs on an nn module we turn it into an `UnspecializedNNModuleVariable` which prevents static buffers and parameters. In subsequent pr i will add support for cudagraph mutation of buffers/params, which with this pr takes llama 1.6x -> 4.4x in inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106092
Approved by: https://github.com/yanboliang
2023-07-28 17:16:19 +00:00
Wanchao Liang
f139aab2f4 [dynamo] add initial dynamo support for DTensor (#103146)
This PR adds initial dynamo support for DTensor, in particular, it:
- allows DTensor be passed into a compiled function, and allow fakify
DTensor during dynamo tracing by turning the inner local tensor to meta
tensor.
- We use `allow_in_graph` to include `DTensor` and `DTensor.from_local` to be represented as `TorchVariable`
- The dtensor created becomes a normal `TensorVariable` and it would insert any tensor operations to the output graph just like torch.Tensor
- note that dtensor have a new instance method `redistribute` compare to plain tensor, and we currently special handle it in `TensorVariable`

`from_local` and `redistribute` both accepts some non-trival metadata as arguments (i.e. DeviceMesh, Placement) which fx.Graph does not support. In order to let these two APIs appear in the dynamo captured graph, we encoded the metadata into a new_function (like `functools.partial`) and the new function only accepts prim args (i.e. tensor), then we put `call_function` with this new_function to the graph. This is suggested by @ezyang. The underlying rationale here is that the metadata will not change across the graph invocations so it's safe to encode them.

Captured graph:
```
    def forward(self, L_x_ : torch.Tensor):
        l_x_ = L_x_

        # File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:685, code: dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
        prim_from_local = torch__dynamo_variables_torch_prim_from_local(l_x_, run_check = False);  l_x_ = None

        # File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:686, code: return dt.redistribute(mesh, [Replicate()]).to_local() + 2
        prim_redistribute = torch__dynamo_variables_tensor_prim_redistribute(prim_from_local);  prim_from_local = None
        to_local = prim_redistribute.to_local();  prim_redistribute = None
        add = to_local + 2;  to_local = None
        return (add,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103146
Approved by: https://github.com/voznesenskym
2023-07-19 16:01:12 +00:00
Michael Voznesensky
a6758cb304 Revert "Revert "SetVariable in dynamo (#103205)"" + Fix for improved graph breaks (#105345)
This reverts commit 94b3f9f646.

Fix

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105345
Approved by: https://github.com/atalman
2023-07-17 23:21:30 +00:00
PyTorch MergeBot
94b3f9f646 Revert "SetVariable in dynamo (#103205)"
This reverts commit 82fb5edfc7.

Reverted https://github.com/pytorch/pytorch/pull/103205 on behalf of https://github.com/atalman due to Failing cuda11.8-py3.10-gcc7-sm86 / test (inductor_torchbench_dynamic) with CUDA oom ([comment](https://github.com/pytorch/pytorch/pull/103205#issuecomment-1638115073))
2023-07-17 13:13:47 +00:00
Michael Voznesensky
82fb5edfc7 SetVariable in dynamo (#103205)
Set initial
Fixes https://github.com/pytorch/pytorch/issues/94738

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103205
Approved by: https://github.com/jansel
2023-07-15 02:25:31 +00:00
Animesh Jain
9647a251cb [dynamo] Dataclass variables with default field (#104840)
The main complexity comes from the __init__ function of Dataclass variables which look something like this

```
[2023-07-10 05:01:29,548] torch._dynamo.symbolic_convert: [DEBUG] INLINING <code object __init__ at 0x7f7015154450, file "<string>", line 2>
  3           0 LOAD_FAST                1 (b)
              2 LOAD_FAST                0 (self)
              4 STORE_ATTR               0 (b)

  4           6 LOAD_FAST                2 (named_tensors)
              8 LOAD_DEREF               0 (_HAS_DEFAULT_FACTORY)
             10 IS_OP                    0
             12 POP_JUMP_IF_FALSE       20
             14 LOAD_DEREF               1 (_dflt_named_tensors)
             16 CALL_FUNCTION            0
             18 JUMP_FORWARD             2 (to 22)
        >>   20 LOAD_FAST                2 (named_tensors)
        >>   22 LOAD_FAST                0 (self)
             24 STORE_ATTR               1 (named_tensors)
             26 LOAD_CONST               0 (None)
             28 RETURN_VALUE
```

There are multiple issues
* VariableBuilder call in functions.py was wrong. We were calling *options as args.
* We were not setting source while tracking the new object. This led to no source for Dataclass variable, which has some new variables in its closures as seen in the above bytecode.
* There is IS_OP in above bytecode, which brings more cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104840
Approved by: https://github.com/jansel
2023-07-13 01:25:57 +00:00
Michael Lazos
86680a6c0b [dynamo] handle calls to typing.cast (#104799)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104799
Approved by: https://github.com/jansel
2023-07-10 21:05:17 +00:00
Andy Rock
fb1ad02833 Support bit shifting SymInts (#104318)
Fixes #104228.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104318
Approved by: https://github.com/ezyang
2023-07-05 18:35:57 +00:00
Animesh Jain
2bb83cd45c [dynamo][ac] Minor refactor for better code organization and a bugfix (#104276)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104276
Approved by: https://github.com/zou3519
2023-06-29 12:57:59 +00:00
cdzhan
c06bb82ba1 fix specialization when you pass an unspec int into slicing on a Python list. (#104142)
Fixes #103545

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104142
Approved by: https://github.com/malfet, https://github.com/jansel
2023-06-28 13:13:07 +00:00
Tugsbayasgalan Manlaibaatar
d4b85f3031 Support params/buffers inside cond and map (#102310)
With #102022, params and buffers are always treated as special case of free variables. In this PR, I switch cond and map implementation to the this method and deprecate the old tracing mechanism.

Differential Revision: [D46746202](https://our.internmc.facebook.com/intern/diff/D46746202)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102310
Approved by: https://github.com/avikchaudhuri, https://github.com/zou3519
2023-06-20 05:33:10 +00:00
Yanbo Liang
1be1f5090e [Dynamo] Fix broken NNModule comparison (#103812)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103812
Approved by: https://github.com/msaroufim
2023-06-20 04:01:24 +00:00
Mengwei Liu
96c23fe212 [dynamo][numpy] Add support for builtin functions (#103457)
In order to be able to run stuff like:
```
def f(x):
	a = x.numpy()
        return a + a
```
This PR adds a branch in `BuiltinVariable` to handle `NumpyNdarrayVariable` case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103457
Approved by: https://github.com/ezyang
2023-06-15 09:18:45 +00:00
PyTorch MergeBot
2087d32811 Revert "Support params/buffers inside cond and map (#102310)"
This reverts commit 766f236bad.

Reverted https://github.com/pytorch/pytorch/pull/102310 on behalf of https://github.com/huydhn due to The test is failing in trunk 766f236bad ([comment](https://github.com/pytorch/pytorch/pull/102310#issuecomment-1592159710))
2023-06-15 00:29:20 +00:00
Tugsbayasgalan Manlaibaatar
766f236bad Support params/buffers inside cond and map (#102310)
With #102022, params and buffers are always treated as special case of free variables. In this PR, I switch cond and map implementation to the this method and deprecate the old tracing mechanism.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102310
Approved by: https://github.com/avikchaudhuri, https://github.com/zou3519
2023-06-14 22:32:33 +00:00
Michael Voznesensky
056bf951bf Strengthen partially supported invariant of base for chained sources (#103445)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103445
Approved by: https://github.com/ezyang
2023-06-13 22:44:28 +00:00
Edward Z. Yang
1d40b394e6 Remove getitem dynamic shapes special case (#103296)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103296
Approved by: https://github.com/voznesenskym
2023-06-10 01:27:22 +00:00
Bin Bao
39bf86ae90 [dynamo] Support OrderedDict constructor with kwargs (#103192)
Summary: To solve an issue in https://github.com/pytorch/pytorch/issues/102878.
The solution follows the example in https://github.com/pytorch/pytorch/pull/98660.
It only solves a problem for standard OrderedDict. There is another
problem if we use a user-defined CustomDict.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103192
Approved by: https://github.com/yanboliang
2023-06-08 12:14:21 +00:00
Mark Saroufim
790f5732f6 Fix Graph Break on builtin comparison on NNModule (#103176)
Fixes https://github.com/pytorch/pytorch/issues/102338

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103176
Approved by: https://github.com/anijain2305
2023-06-07 22:51:43 +00:00
Michael Lazos
2434a205de Support unary not on lists (#102210)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102210
Approved by: https://github.com/anijain2305
2023-05-25 02:45:36 +00:00
Animesh Jain
2fa1b563da [dynamo] Activation checkpoint higher order ops - Reland 101028 (#101790)
https://github.com/pytorch/pytorch/pull/101028 was reverted due to internal breakage. Relanding.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101790
Approved by: https://github.com/zou3519
2023-05-18 19:09:14 +00:00
PyTorch MergeBot
d0db7d624d Revert "[dynamo] Activation checkpointing as higher order op (#101028)"
This reverts commit de15e740a1.

Reverted https://github.com/pytorch/pytorch/pull/101028 on behalf of https://github.com/jeanschmidt due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/101028#issuecomment-1548280970))
2023-05-15 17:47:08 +00:00
Animesh Jain
de15e740a1 [dynamo] Activation checkpointing as higher order op (#101028)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101028
Approved by: https://github.com/voznesenskym, https://github.com/zou3519
2023-05-12 03:17:41 +00:00
Michael Voznesensky
aafc6ce8cc Produce constant variables in cases where a SymNode is created with a constant (#100144)
` AOT_DYNAMIC_SHAPES=1 TORCHDYNAMO_DYNAMIC_SHAPES=1  benchmarks/dynamo/huggingface.py --performance  --training --amp --backend eager --disable-cudagraphs --device cuda --only AllenaiLongformerBase --explain`

Looks promising!

Goes from:

Dynamo produced 173 graphs covering 2760 ops with 160 graph breaks (14 unique)

To:

Dynamo produced 6 graphs covering 2298 ops with 15 graph breaks (7 unique)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100144
Approved by: https://github.com/ezyang
2023-05-01 21:32:11 +00:00
PyTorch MergeBot
89c43f4108 Revert "Produce constant variables in cases where a SymNode is created with a constant (#100144)"
This reverts commit d7bdfd3454.

Reverted https://github.com/pytorch/pytorch/pull/100144 on behalf of https://github.com/ezyang due to ci failure is real ([comment](https://github.com/pytorch/pytorch/pull/100144#issuecomment-1529587039))
2023-05-01 11:10:48 +00:00
Michael Voznesensky
d7bdfd3454 Produce constant variables in cases where a SymNode is created with a constant (#100144)
` AOT_DYNAMIC_SHAPES=1 TORCHDYNAMO_DYNAMIC_SHAPES=1  benchmarks/dynamo/huggingface.py --performance  --training --amp --backend eager --disable-cudagraphs --device cuda --only AllenaiLongformerBase --explain`

Looks promising!

Goes from:

Dynamo produced 173 graphs covering 2760 ops with 160 graph breaks (14 unique)

To:

Dynamo produced 6 graphs covering 2298 ops with 15 graph breaks (7 unique)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100144
Approved by: https://github.com/ezyang
2023-04-30 17:13:57 +00:00
Michael Voznesensky
e789de952f Make sizevar addition work properly (#100015)
Rm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100015
Approved by: https://github.com/ezyang
2023-04-26 15:59:26 +00:00
Aaron Gokaslan
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
Jason Ansel
f4354b2a5e [dynamo] Support dict kwargs constructor (#98660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98660
Approved by: https://github.com/yanboliang
2023-04-20 15:40:00 +00:00
Jason Ansel
47c685def3 [dynamo] Support DELETE_ATTR (#98698)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98698
Approved by: https://github.com/yanboliang
2023-04-15 20:31:40 +00:00
Edward Z. Yang
ca735ac856 Don't specialize when indexing by SymInt (#99123)
Fixes https://github.com/pytorch/pytorch/issues/99091

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99123
Approved by: https://github.com/msaroufim
2023-04-14 11:39:43 +00:00
PyTorch MergeBot
629377ea8b Revert "Replace _dynamo.config with an object instead of module (#96455)"
This reverts commit 420104a886.

Reverted https://github.com/pytorch/pytorch/pull/96455 on behalf of https://github.com/jansel due to BC breaking, was landed prematurely
2023-04-12 15:06:14 +00:00
Han Qi
420104a886 Replace _dynamo.config with an object instead of module (#96455)
Summary:
    Replace _dynamo.config with an object instead of module

    Current usage patterns of setting and reading fields on config will work
    unchanged.

    Only changes needed going forward:
    1. import torch._dynamo.config will not work. However, just doing
       import torch._dynamo is sufficient to access dynamo config
       as torch._dynamo.config.

    2. Files inside of _dynamo folder need to access config via
       from torch._dynamo.config_util import config instead of
       from torch._dynamo import config. Because _dynamo/__init__.py
       imports some of the files so it would be circular import.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96455
Approved by: https://github.com/williamwen42
2023-04-11 21:23:32 +00:00
Jason Ansel
0c162adfa8 [dynamo] Support callable() on user defined functions (#98662)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98662
Approved by: https://github.com/yanboliang
2023-04-11 05:43:46 +00:00
Edward Z. Yang
b09722f540 Convert logging f-strings to use % format, part two (#98700)
This hits multi-line logging strings

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98700
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00
Jason Ansel
f4858fa8ef Improve dynamo support for autograd.Function (#98158)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98158
Approved by: https://github.com/yanboliang, https://github.com/anijain2305
2023-04-10 00:33:51 +00:00
Tugsbayasgalan Manlaibaatar
12f340dcd9 Add round as UserError (#98376)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98376
Approved by: https://github.com/anijain2305
2023-04-06 19:28:00 +00:00
PyTorch MergeBot
e394f6db5a Revert "Improve dynamo support for autograd.Function (#98158)"
This reverts commit 4716fa2411.

Reverted https://github.com/pytorch/pytorch/pull/98158 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it seems to breaks MacOS trunk job 4716fa2411.  The signal was missing from the PR because we disabled MacOS job yesterday due to https://github.com/pytorch/pytorch/issues/98362
2023-04-06 18:15:02 +00:00
Jason Ansel
4716fa2411 Improve dynamo support for autograd.Function (#98158)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98158
Approved by: https://github.com/yanboliang, https://github.com/anijain2305
2023-04-06 16:44:37 +00:00
Tugsbayasgalan Manlaibaatar
37dc47a1ac Make caling type on user defined class UserError (#98366)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98366
Approved by: https://github.com/anijain2305
2023-04-06 05:20:50 +00:00
Michael Voznesensky
ab95b7a05f Support neg calls to dyn shapes (#94068)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94068
Approved by: https://github.com/jansel
2023-04-06 03:33:24 +00:00
Michael Lazos
e6909f6ccc [Dynamo] Fix for tuple construction from tuple iterators (#97862)
Fixes #93405

In short - when calling the builtin function `Tuple` on a list variable we added a list length guard. This paired with converting tuple iterators to a ListIteratorVariable resulted in this guard being improperly added.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97862
Approved by: https://github.com/yanboliang, https://github.com/jansel
2023-03-29 19:20:05 +00:00
BowenBao
60a68477a6 Bump black version to 23.1.0 (#96578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96578
Approved by: https://github.com/ezyang
2023-03-15 06:27:59 +00:00
Yanbo Liang
12ab4f08b7 [Dynamo] No graph break on namedtuple and potential other functions (#96122)
```collections.namedtuple``` caused 40+ ```dynamo.export``` testing failing in 14k github models.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96122
Approved by: https://github.com/jansel, https://github.com/mlazos
2023-03-07 08:00:21 +00:00
Yanbo Liang
6ca286df69 [Dynamo] Support call dict with list/tuple as input (#95928)
Fixes Meta internal use case

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95928
Approved by: https://github.com/jansel
2023-03-04 05:52:33 +00:00
Edward Z. Yang
d303665d33 Make int unspecialization actually work (#95621)
OK, so this PR used to be about reducing the number of constants we specialize on, but it turns out that unspecialization was ~essentially never used (because we still constant specialized way too aggressively) and I ended up having to fix a bunch of issues to actually get tests to pass. So this PR is now "make int unspecialization actually work". As part of this, I have to turn off unspecialization by default, as there are still latent bugs in inductor.

The general strategy is that an unspecialized int is represented as a SymInt. Representing it as a 0d tensor (which is what the code used to do) is untenable: (1) we often need unspecialized ints to participate in size computations, but we have no way of propagating sympy expressions through tensor compute, and (2) a lot of APIs work when passed SymInt, but not when passed a Tensor. However, I continue to represent Numpy scalars as Tensors, as they are rarely used for size computation and they have an explicit dtype, so they are more accurately modeled as 0d tensors.

* I folded in the changes from https://github.com/pytorch/pytorch/pull/95099 as I cannot represent unspecialized ints as SymInts without also turning on dynamic shapes. This also eliminates the necessity for test_unspec.py, as toggling specialization without dynamic shapes doesn't do anything. As dynamic shapes defaults to unspecializing, I just deleted this entirely; for the specialization case, I rely on regular static shape tests to catch it. (Hypothetically, we could also rerun all the tests with dynamic shapes, but WITH int/float specialization, but this seems... not that useful? I mean, I guess export wants it, but I'd kind of like our Source heuristic to improve enough that export doesn't have to toggle this either.)
* Only 0/1 integers get specialized by default now
* A hodgepodge of fixes. I'll comment on the PR about them.

Fixes https://github.com/pytorch/pytorch/issues/95469

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95621
Approved by: https://github.com/jansel, https://github.com/Chillee
2023-03-04 01:22:08 +00:00
PyTorch MergeBot
33cf62359d Revert "Convert operator.not_ to torch.logical_not (#94626)"
This reverts commit 97510c6d50.

Reverted https://github.com/pytorch/pytorch/pull/94626 on behalf of https://github.com/ezyang due to not correct
2023-02-27 21:50:51 +00:00