Commit Graph

7 Commits

Author SHA1 Message Date
Jason Ansel
5fe96eaaf4 [dynamo] Remove VariableTracker.propagate (#111726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111726
Approved by: https://github.com/voznesenskym
ghstack dependencies: #111306, #111415, #111725
2023-11-07 19:55:19 +00:00
Jason Ansel
843a8ecd24 [dynamo] Remove VariableTracker.add_options (#111725)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111725
Approved by: https://github.com/voznesenskym
ghstack dependencies: #111306, #111415
2023-11-07 19:55:19 +00:00
Michael Voznesensky
a902150a1e [Easy] ConstantVariable() -> .create (#109896)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109896
Approved by: https://github.com/ezyang
2023-09-22 22:30:15 +00:00
Wanchao Liang
a29b9101fa [dynamo] fix dynamo + DTensor to work with 2d (#108329)
pair debugged with @wconstab and we found some issue in both dynamo and
the TP's fsdp extension side. This PR fixes the dynamo + DTensor integration
so that the current graph break FSDP can work with tensor parallel by moving
the torch.compile after FSDP wrapping.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108329
Approved by: https://github.com/Skylion007, https://github.com/wconstab
2023-08-31 22:46:26 +00:00
Michael Voznesensky
8549abc347 Grab bag of DTensor enablement stuff (Enable whole graph capture for DTensor) (#105787)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105787
Approved by: https://github.com/ezyang
2023-07-30 00:17:45 +00:00
Wanchao Liang
c76c84bde4 [dynamo] make ProcessGroupVariable a DistributedVariable (#105593)
This PR move the ProcessGroupVariable from UDO to DistributedVT
so that Distributed VTs are consolidated together

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105593
Approved by: https://github.com/voznesenskym
2023-07-26 06:42:50 +00:00
Wanchao Liang
f139aab2f4 [dynamo] add initial dynamo support for DTensor (#103146)
This PR adds initial dynamo support for DTensor, in particular, it:
- allows DTensor be passed into a compiled function, and allow fakify
DTensor during dynamo tracing by turning the inner local tensor to meta
tensor.
- We use `allow_in_graph` to include `DTensor` and `DTensor.from_local` to be represented as `TorchVariable`
- The dtensor created becomes a normal `TensorVariable` and it would insert any tensor operations to the output graph just like torch.Tensor
- note that dtensor have a new instance method `redistribute` compare to plain tensor, and we currently special handle it in `TensorVariable`

`from_local` and `redistribute` both accepts some non-trival metadata as arguments (i.e. DeviceMesh, Placement) which fx.Graph does not support. In order to let these two APIs appear in the dynamo captured graph, we encoded the metadata into a new_function (like `functools.partial`) and the new function only accepts prim args (i.e. tensor), then we put `call_function` with this new_function to the graph. This is suggested by @ezyang. The underlying rationale here is that the metadata will not change across the graph invocations so it's safe to encode them.

Captured graph:
```
    def forward(self, L_x_ : torch.Tensor):
        l_x_ = L_x_

        # File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:685, code: dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
        prim_from_local = torch__dynamo_variables_torch_prim_from_local(l_x_, run_check = False);  l_x_ = None

        # File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:686, code: return dt.redistribute(mesh, [Replicate()]).to_local() + 2
        prim_redistribute = torch__dynamo_variables_tensor_prim_redistribute(prim_from_local);  prim_from_local = None
        to_local = prim_redistribute.to_local();  prim_redistribute = None
        add = to_local + 2;  to_local = None
        return (add,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103146
Approved by: https://github.com/voznesenskym
2023-07-19 16:01:12 +00:00