Summary:
Adds two more "missing" NumPy aliases: arctanh and arcsinh, and simplifies the dispatch of other arc* aliases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43762
Reviewed By: ngimel
Differential Revision: D23396370
Pulled By: mruberry
fbshipit-source-id: 43eb0c62536615fed221d460c1dec289526fb23c
Summary:
Add a max/min operator that only return values.
## Some important decision to discuss
| **Question** | **Current State** |
|---------------------------------------|-------------------|
| Expose torch.max_values to python? | No |
| Remove max_values and only keep amax? | Yes |
| Should amax support named tensors? | Not in this PR |
## Numpy compatibility
Reference: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
| Parameter | PyTorch Behavior |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| `axis`: None or int or tuple of ints, optional. Axis or axes along which to operate. By default, flattened input is used. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes as before. | Named `dim`, behavior same as `torch.sum` (https://github.com/pytorch/pytorch/issues/29137) |
| `out`: ndarray, optional. Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. | Same |
| `keepdims`: bool, optional. If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. | implemented as `keepdim` |
| `initial`: scalar, optional. The minimum value of an output element. Must be present to allow computation on empty slice. | Not implemented in this PR. Better to implement for all reductions in the future. |
| `where`: array_like of bool, optional. Elements to compare for the maximum. | Not implemented in this PR. Better to implement for all reductions in the future. |
**Note from numpy:**
> NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well. To ignore NaN values (MATLAB behavior), please use nanmax.
PyTorch has the same behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43092
Reviewed By: ngimel
Differential Revision: D23360705
Pulled By: mruberry
fbshipit-source-id: 5bdeb08a2465836764a5a6fc1a6cc370ae1ec09d
Summary:
Related to https://github.com/pytorch/pytorch/issues/38349
Implement NumPy-like functions `maximum` and `minimum`.
The `maximum` and `minimum` functions compute input tensors element-wise, returning a new array with the element-wise maxima/minima.
If one of the elements being compared is a NaN, then that element is returned, both `maximum` and `minimum` functions do not support complex inputs.
This PR also promotes the overloaded versions of torch.max and torch.min, by re-dispatching binary `torch.max` and `torch.min` to `torch.maximum` and `torch.minimum`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42579
Reviewed By: mrshenli
Differential Revision: D23153081
Pulled By: mruberry
fbshipit-source-id: 803506c912440326d06faa1b71964ec06775eac1
Summary:
This PR:
- Adds a method variant to movedim
- Fixes the movedim docs so it will actually appear in the documentation
- Fixes three view doc links which were broken
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43122
Reviewed By: ngimel
Differential Revision: D23166222
Pulled By: mruberry
fbshipit-source-id: 14971585072bbc04b5366d4cc146574839e79cdb
Summary:
This adds the torch.arccosh alias and updates alias testing to validate the consistency of the aliased and original operations. The alias testing is also updated to run on CPU and CUDA, which revealed a memory leak when tracing (see https://github.com/pytorch/pytorch/issues/43119).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43107
Reviewed By: ngimel
Differential Revision: D23156472
Pulled By: mruberry
fbshipit-source-id: 6155fac7954fcc49b95e7c72ed917c85e0eabfcd
Summary:
This PR:
- updates test_op_normalization.py, which verifies that aliases are correctly translated in the JIT
- adds torch.linalg.det as an alias for torch.det
- moves the torch.linalg.outer alias to torch.outer (to be consistent with NumPy)
The torch.linalg.outer alias was put the linalg namespace erroneously as a placeholder since it's a "linear algebra op" according to NumPy but is actually still in the main NumPy namespace.
The updates to test_op_normalization are necessary. Previously it was using method_tests to generate tests, and method_tests assumes test suites using it also use the device generic framework, which test_op_normalization did not. For example, some ops require decorators like `skipCPUIfNoLapack`, which only works in device generic test classes. Moving test_op_normalization to the device generic framework also lets these tests run on CPU and CUDA.
Continued reliance on method_tests() is excessive since the test suite is only interested in testing aliasing, and a simpler and more readable `AliasInfo` class is used for the required information. An example impedance mismatch between method_tests and the new tests, for example, was how to handle ops in namespaces like torch.linalg.det. In the future this information will likely be folded into a common 'OpInfo' registry in the test suite.
The actual tests performed are similar to what they were previously: a scripted and traced version of the op is run and the test verifies that both graphs do not contain the alias name and do contain the aliased name.
The guidance for adding an alias has been updated accordingly.
cc mattip
Note:
ngimel suggests:
- deprecating and then removing the `torch.ger` name
- reviewing the implementation of `torch.outer`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42802
Reviewed By: zou3519
Differential Revision: D23059883
Pulled By: mruberry
fbshipit-source-id: 11321c2a7fb283a6e7c0d8899849ad7476be42d1
Summary:
Per title. Also updates our guidance for adding aliases to clarify interned_string and method_test requirements. The alias is tested by extending test_clamp to also test clip.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42770
Reviewed By: ngimel
Differential Revision: D23020655
Pulled By: mruberry
fbshipit-source-id: f1d8e751de9ac5f21a4f95d241b193730f07b5dc
Summary:
https://github.com/pytorch/pytorch/issues/38349
mruberry
Not entirely sure if all the changes are necessary in how functions are added to Pytorch.
Should it throw an error when called with a non-complex tensor? Numpy allows non-complex arrays in its imag() function which is used in its isreal() function but Pytorch's imag() throws an error for non-complex arrays.
Where does assertONNX() get its expected output to compare to?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41298
Reviewed By: ngimel
Differential Revision: D22610500
Pulled By: mruberry
fbshipit-source-id: 817d61f8b1c3670788b81690636bd41335788439
Summary:
Implementing the quantile operator similar to [numpy.quantile](https://numpy.org/devdocs/reference/generated/numpy.quantile.html).
For this implementation I'm reducing it to existing torch operators to get free CUDA implementation. It is more efficient to implement multiple quickselect algorithm instead of sorting but this can be addressed in a future PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39417
Reviewed By: mruberry
Differential Revision: D22525217
Pulled By: heitorschueroff
fbshipit-source-id: 27a8bb23feee24fab7f8c228119d19edbb6cea33
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38490
A meta tensor is a tensor that is a lot like a normal tensor,
except it doesn't actually have any data associated with it.
You can use them to carry out shape/dtype computations without
actually having to run the actual code; for example, this could
be used to do shape inference in a JIT analysis pass.
Check out the description in DispatchKey.h for more information.
Meta tensors are part of a larger project to rationalize how we
write kernels so that we don't have to duplicate shape logic
in CPU kernel, CUDA kernel and meta kernel (this PR makes the
duplication problem worse!) However, that infrastructure can
be built on top of this proof of concept, which just shows how
you can start writing meta kernels today even without this
infrastructure.
There are a lot of things that don't work:
- I special cased printing for dense tensors only; if you try to
allocate a meta sparse / quantized tensor things aren't going
to work.
- The printing formula implies that torch.tensor() can take an
ellipsis, but I didn't add this.
- I wrote an example formula for binary operators, but it isn't
even right! (It doesn't do type promotion of memory layout
correctly). The most future proof way to do it right is to
factor out the relevant computation out of TensorIterator,
as it is quite involved.
- Nothing besides torch.add works right now
- Meta functions are ALWAYS included in mobile builds (selective
build doesn't work on them). This isn't a big deal for now
but will become more pressing as more meta functions are added.
One reason I'm putting up this PR now is to check with Yinghai Lu
if we can unblock shape inference for accelerators, while we are
still working on a long term plan for how to unify all shape
computation across our kernels.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21935609
Pulled By: ezyang
fbshipit-source-id: f7d8636eeb8516b6bc296db99a16e56029972eee
Summary:
This PR aims to add `arcosh`, `arcsinh` and `arctanh` support. Please see issue https://github.com/pytorch/pytorch/issues/38349 for more details.
**TODOs:**
* [x] Add test cases for `arcosh`, `arcsinh` and `arctanh`. (need help)
* [x] Overload ops if `std::op` does not work with `thrust::complex` types (like for `sinh`, `cosh`).
Note: `std::acosh, std::asinh, std::atanh` do not support `thrust::complex` types. Added support for complex types for these 3 ops (`arccosh, arcsinh, arctanh`)
cc: mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38388
Differential Revision: D21882055
Pulled By: mruberry
fbshipit-source-id: d334590b47c5a89e491a002c3e41e6ffa89000e3
Summary:
Related to gh-36318
Mention `bfloat16` dtype and `BFloat16Tensor` in documentation. The real fix would be to implement cpu operations on 16-bit float `half`, and I couldn't help but notice that `torch.finfo(torch.bfloat16).xxx` crashes for `xxx in ['max', 'min', 'eps']`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37051
Differential Revision: D21476851
Pulled By: ngimel
fbshipit-source-id: fef601d3116d130d67cd3a5654077f31b699409b
Summary:
Previously torch.isclose would RuntimeError when called on complex tensors. This update updates torch.isclose to run on complex tensors and be consistent with [NumPy](https://numpy.org/doc/1.18/reference/generated/numpy.isclose.html). However, NumPy's handling of NaN, -inf, and inf values is odd, so I adopted Python's [cmath.isclose](https://docs.python.org/3/library/cmath.html) behavior when dealing with them. See https://github.com/numpy/numpy/issues/15959 for more on NumPy's behavior.
While implementing complex isclose I also simplified the isclose algorithm to:
- A is close to B if A and B are equal, if equal_nan is true then NaN is equal to NaN
- If A and B are finite, then A is close to B if `abs(a - b) <= (atol + abs(rtol * b))`
This PR also documents torch.isclose, since it was undocumented, and adds multiple tests for its behavior to test_torch.py since it had no dedicated tests.
The PR leaves equal_nan=True with complex inputs an error for now, pending the outcome of https://github.com/numpy/numpy/issues/15959.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36456
Differential Revision: D21159853
Pulled By: mruberry
fbshipit-source-id: fb18fa7048e6104cc24f5ce308fdfb0ba5e4bb30
Summary:
The current implementations of torch.real and torch.imag are not NumPy compatible. In particular:
- torch.real on a real tensor does not return the real tensor, like contiguous
- torch.real on a complex tensor does not return a real-valued view of the real part
- torch.imag on a complex tensor does not return a real-valued view of the imaginary part
- torch.Tensor.real and torch.Tensor.imag exist as methods, but in NumPy they are writable attributes
This PR makes the functions NumPy compatible by removing the method variants and out kwarg, restricting them to work on only real tensors, and updating the behavior of torch.real to return its input. New tests are added to test_torch.py to verify the behavior, a couple existing complex tests are skipped, and the documentation is updated to reflect the change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35560
Differential Revision: D20714568
Pulled By: mruberry
fbshipit-source-id: 5dd092f45757b620c8426c829dd15ee997246a26
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.
In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.
New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794
Differential Revision: D20545507
Pulled By: mruberry
fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20509850
Pulled By: mruberry
fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20497453
Pulled By: mruberry
fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
Summary:
This PR comes from discussion with albanD in https://fb.quip.com/npBHAXaPfnbu. Main goal is to clarify view ops with general outplace/inplace ops and remind users about the difference.
For reference this information is only available in code which is internal and hard to find. Also changes to this list actually affect users so we think it's better to expose it as public information. It's also helpful for new backend like XLA when implementing PyTorch ops. 19bbb4fccb/tools/autograd/gen_autograd.py (L32-L68)
Please feel free to comment!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32560
Differential Revision: D20161069
Pulled By: ailzhang
fbshipit-source-id: b5f1fd4353fe7594a427784db288aeb5a37dc521