**Summary**
This PR adds a lowering pass for x86 backend
- Patterns of `dequantize -> conv/linear (-> quantize)` are fused to corresponding quantized onednn ops.
- Weights are prepacked ahead of time.
- Post ops of conv/linear are fused if supported.
- The pass returns a `GraphModule` with the modifications mentioned above.
**Test plan**
```
pytest test/quantization/pt2e/test_x86inductor_quantizer.py -k test_lowering_to_x86
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149708
Approved by: https://github.com/jerryzh168, https://github.com/leslie-fang-intel
Summary:
As title
This is a BC-breaking change because graph produced by "capture_pre_autograd_graph" cannot be input to quantization anymore. But this is ok, since this API is deprecated for a while and is going to be deleted. We have removed all call sites of it.
We remove the deprecated API references in code, docs, and tests.
We also removed two tests that specific to capture_pre_autograd_graph API.
Test Plan: CI
Differential Revision: D65351887
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139505
Approved by: https://github.com/tugsbayasgalan, https://github.com/andrewor14, https://github.com/jerryzh168
# Motivation
This PR add `XPUInductorQuantizer`, which would defined the recipe of int8 quantization at XPU backend.
# Detailed
The `XPUInductorQuantizer` is class derived from `X86InductorQuantizer` as both quantizer would take the advantage of highly optimized operators in oneDNN library(qconv, qlinear, qconv/qlinear fusion).
We share the same recipe as `X86InductorQuantizer`, so we would have same `annotate_xxxx` methods. So, in ideal situation, the `XPUInductorQuantizer` would have no class body as all implementation can inherit from base class.
In this PR, we override the `annotate_xxx` method for operators that has NOT be implemented. All operators XPU backend does not implement would be fallbacked to fp32 implementation as the node in graph is a `dq-op-q` pairs. This would help provide good OOB usability for XPU backend. On the other hand, the implemented operators would uses `annotate_op` implemented in base class and could be lowered successfully.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139578
Approved by: https://github.com/EikanWang, https://github.com/leslie-fang-intel, https://github.com/CuiYifeng, https://github.com/jerryzh168
ghstack dependencies: #133080
Fixes https://github.com/pytorch/pytorch/issues/123068
Fixes https://github.com/pytorch/pytorch/issues/111256
While investigating the flaky doc build failure .w.r.t duplicated `torch.ao.quantization.quantize` docstring warning, i.e. https://github.com/pytorch/pytorch/actions/runs/8532187126/job/23376591356#step:10:1260, I discover an old but still open bug in Sphinx https://github.com/sphinx-doc/sphinx/issues/4459. These warnings have always been there, but they are hidden because we are using `-j auto` to build docs with multiple threads. It's just by chance that they start to surface now.
The issue can be reproduced by removing `-j auto` from https://github.com/pytorch/pytorch/blob/main/docs/Makefile#L5 and run `make html` locally. Then, these warnings shows up consistently. As `make html` treats warnings as errors, they will fail the build.
```
...
/data/users/huydo/conda/py3.8/lib/python3.8/site-packages/torch/ao/quantization/quantize.py:docstring of torch.ao.quantization.quantize.quantize:1: WARNING: duplicate object description of torch.ao.quantization.quantize, other instance in quantization, use :noindex: for one of them
/data/users/huydo/conda/py3.8/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py:docstring of torch.nn.parallel.data_parallel.data_parallel:1: WARNING: duplicate object description of torch.nn.parallel.data_parallel, other instance in nn, use :noindex: for one of them
/data/users/huydo/conda/py3.8/lib/python3.8/site-packages/torch/nn/utils/spectral_norm.py:docstring of torch.nn.utils.spectral_norm.spectral_norm:1: WARNING: duplicate object description of torch.nn.utils.spectral_norm, other instance in nn, use :noindex: for one of them
/data/users/huydo/conda/py3.8/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:docstring of torch.nn.utils.weight_norm.weight_norm:1: WARNING: duplicate object description of torch.nn.utils.weight_norm, other instance in nn, use :noindex: for one of them
/data/users/huydo/github/pytorch/docs/source/nn.rst:579: WARNING: duplicate object description of torch.nn.parallel.data_parallel, other instance in generated/torch.nn.functional.torch.nn.parallel.data_parallel, use :noindex: for one of them
/data/users/huydo/github/pytorch/docs/source/nn.rst:594: WARNING: duplicate object description of torch.nn.utils.spectral_norm, other instance in generated/torch.nn.utils.spectral_norm, use :noindex: for one of them
/data/users/huydo/github/pytorch/docs/source/nn.rst:595: WARNING: duplicate object description of torch.nn.utils.weight_norm, other instance in generated/torch.nn.utils.weight_norm, use :noindex: for one of them
/data/users/huydo/github/pytorch/docs/source/quantization.rst:1348: WARNING: duplicate object description of torch.ao.quantization.quantize, other instance in generated/torch.ao.quantization.quantize, use :noindex: for one of them
...
```
The fix is just to clean up those duplicated placeholder py:module docs, which were there because these modules didn't have any docs originally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123244
Approved by: https://github.com/andrewor14, https://github.com/malfet
Summary: our docs were saying dynamic embedding bag wasn't supported but
it actually is (at least at the same level as embeddings were) it just wasn't previously tested/listed.
Test Plan: python test/test_quantization.py -k "test_embedding"
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107623
Approved by: https://github.com/jerryzh168
Add non-package python modules to the public API checks.
The original change is to remove the `ispkg` check in this line
https://github.com/pytorch/pytorch/blob/main/docs/source/conf.py#L518
Everything else is to add the appropriate modules to the rst files, make sure every module we provide can be imported (fixed by either making optional dependencies optional or just deleting files that have been un-importable for 3 years), make API that are both modules and functions (like torch.autograd.gradcheck) properly rendered on the docs website without confusion and add every non-documented API to the allow list (~3k of them).
Next steps will be to try and fix these missing docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110568
Approved by: https://github.com/zou3519
**Summary**
- Update the quantization document that default qconfig with oneDNN backend is recommended to be used on CPUs with Vector Neural Network Instruction support.
- Add the warning message when user uses default qconfig with oneDNN backend on CPU without Vector Neural Network Instruction support.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103653
Approved by: https://github.com/jgong5, https://github.com/malfet
Summary: The recommended way to use QConfigMapping is through
`get_default_qconfig_mapping`. However, the docs still references
usages that use `QConfigMapping().set_global(...)`. This doesn't
actually work well in practice when the model has fixed qparams
ops for example. This commit updates these usages.
Reviewers: vkuzo
Subscribers: vkuzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87299
Approved by: https://github.com/jerryzh168
`Sparsity` as a term doesn't reflect the tools that are developed by the AO. The `torch/ao/sparsity` also has utilities for structured pruning, which internally we always referred to as just "pruning". To avoid any confusion, we renamed `Sparsity` to `Prune`. We will not be introducing the backwards compatibility, as so far this toolset was kept under silent development.
This change will reflect the changes in the documentation as well.
**TODO:**
- [ ] Change the tutorials
- [ ] Confirm no bc-breakages
- [ ] Reflect the changes in the trackers and RFC docs
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84867
Approved by: https://github.com/supriyar
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
- [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- `torch/ao/nn/__init__.py` → Changing the imports to lazy.
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
- [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] [Current PR] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [ ] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [ ] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
Differential Revision: [D36792967](https://our.internmc.facebook.com/intern/diff/D36792967/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36792967/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78712
Approved by: https://github.com/jerryzh168
Summary: There is currently per channel quantization support for Conv1d,
however this was not highlighted by the documentation for quantization
when discussion which modules have per channel quantization support.
This adds that there is exisiting support for Conv1d, with evidence
reproducable through the test plan below.
Test Plan:
```
class SingleLayerModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1d = torch.nn.Conv1d(5, 5, 1).to(dtype=torch.float)
def forward(self, x):
x = self.conv1d(x)
return x
def get_example_inputs(self):
return (torch.rand(5, 5, 1),)
torch.backends.quantized.engine = "fbgemm"
model = SingleLayerModel()
example_input = model.get_example_inputs()[0]
q_config = q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
prepared = quantize_fx.prepare_fx(model, q_config_mapping, example_input)
print(prepared.conv1d.qconfig.weight.p.func)
```
Printing the above lines shows that the Conv1d has a
PerChannelMinMaxObserver. To show that this doesn't work for everything,
if you replace the Conv1d with a ConvTranspose1d, you will see running
the same code above that there is an error thrown about lack of support.
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81349
Approved by: https://github.com/andrewor14
The BaseDataScheduler is the abstract scheduler class specifically for the
BaseDataSparsifier class. This class controls a specific hyperparameter of
the sparsifier class and varies it across the training process (or across time).
Args:
data_sparsifier (instance of BaseDataSparsifier)
Implemented class data sparsifier class wherein the update_mask is implemented
schedule_param (str)
A specific hyperparameter of the passed sparsifier that needs to be scheduled/varied
last_epoch (int, default=-1)
This is specifically is passed when training needs to be resumed from a particular
point.
verbose (bool, default=False)
Verbosity of the BaseDataScheduler
The *get_schedule_param()* function needs to be implemented by the user.
Test Plan:
```python test/test_ao_sparsity.py TestBaseDataScheduler```
Differential Revision: [D37358608](https://our.internmc.facebook.com/intern/diff/D37358608)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79817
Approved by: https://github.com/jerryzh168, https://github.com/z-a-f
Summary: per https://github.com/pytorch/pytorch/issues/79135 the code
snippets in the docs don't run. This is a recurring problem since
previously there was no unit test to check that these code snippets
actually ran. This PR adds support for such a test, importing the
snippet as a string and evaluating it to make sure that it actually runs
if the code snippet has user defined code, you can pass in dummy
versions using global_inputs. Sometimes the imports of the code snippets
behave oddly but you can pass them in as in test_quantization_doc_custom
where nnq is passed in.
Test Plan: python test/test_quantization.py TestQuantizationDocs
also see https://github.com/pytorch/pytorch/pull/79994 to see what shows up in CI when the docs get broken
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79923
Approved by: https://github.com/z-a-f, https://github.com/vspenubarthi