Commit Graph

436 Commits

Author SHA1 Message Date
Xuehai Pan
55064a4ef9 [BE] add parentheses to kwargs unpacking func(*args, **(kwargs or {})) (#115026)
This PR adds parentheses to kwargs unpacking `func(*args, **(kwargs or {}))` for better code readability.

With/without the parentheses are semantic equivalent because they produce the same bytecode.

```console
$ echo "func(*args, **kwargs or {})" | python3 -m dis -
  0           0 RESUME                   0

  1           2 PUSH_NULL
              4 LOAD_NAME                0 (func)
              6 LOAD_NAME                1 (args)
              8 BUILD_MAP                0
             10 LOAD_NAME                2 (kwargs)
             12 JUMP_IF_TRUE_OR_POP      1 (to 16)
             14 BUILD_MAP                0
        >>   16 DICT_MERGE               1
             18 CALL_FUNCTION_EX         1
             20 POP_TOP
             22 LOAD_CONST               0 (None)
             24 RETURN_VALUE

$ echo "func(*args, **(kwargs or {}))" | python3 -m dis -
  0           0 RESUME                   0

  1           2 PUSH_NULL
              4 LOAD_NAME                0 (func)
              6 LOAD_NAME                1 (args)
              8 BUILD_MAP                0
             10 LOAD_NAME                2 (kwargs)
             12 JUMP_IF_TRUE_OR_POP      1 (to 16)
             14 BUILD_MAP                0
        >>   16 DICT_MERGE               1
             18 CALL_FUNCTION_EX         1
             20 POP_TOP
             22 LOAD_CONST               0 (None)
             24 RETURN_VALUE
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115026
Approved by: https://github.com/Skylion007
2023-12-03 20:03:26 +00:00
Rohan Varma
3c78ea4c9d [DDP][Compile] Test to Ensure torch.compile works w/static_graph=True (#114621)
Resolves https://github.com/pytorch/pytorch/issues/93672. This was
actually fixed by https://github.com/pytorch/pytorch/pull/103487 but I didn't
realize that PR also fixes torch compile at the time.

Differential Revision: [D51596148](https://our.internmc.facebook.com/intern/diff/D51596148/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114621
Approved by: https://github.com/wconstab
2023-12-01 22:18:45 +00:00
Philip Meier
373f2060ba fix extending torch native API docs (#114863)
Couldn't think of a better `release notes:` label. Feel free to set a more fitting one
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114863
Approved by: https://github.com/mikaylagawarecki
2023-12-01 06:09:35 +00:00
Edward Z. Yang
09df6b771b Add a note about performant record_stream use. (#112526)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112526
Approved by: https://github.com/albanD
2023-11-02 15:50:22 +00:00
Kurt Mohler
fd209543d5 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD, https://github.com/aaronenyeshi
2023-11-01 16:10:09 +00:00
PyTorch MergeBot
ace2713d1e Revert "Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)"
This reverts commit f1785373c0.

Reverted https://github.com/pytorch/pytorch/pull/111377 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/111377#issuecomment-1784179040))
2023-10-29 17:41:55 +00:00
Kurt Mohler
f1785373c0 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD
2023-10-26 02:39:06 +00:00
Nikita Shulga
d22e5e4b52 Fix DDP notes (#111833)
To include `import os` otherwise sample is not syntactically correct Reported in https://github.com/pytorch/pytorch.github.io/pull/1490

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111833
Approved by: https://github.com/wanchaol
2023-10-23 22:05:36 +00:00
eqy
894b9957c8 [DOCS][CUDA] Update TF32 docs for sm90 (#111337)
For #110252.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111337
Approved by: https://github.com/msaroufim
2023-10-19 09:36:13 +00:00
albanD
a0bbd075b2 Add the Mode section in the extending doc (#110073)
Cover the basic principles of Mode and an example on how to use them and their behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110073
Approved by: https://github.com/janeyx99
2023-10-06 23:50:55 +00:00
Banit Agrawal
64583c4d04 [CUDA Host Allocator] Add support of CudaHostRegister (#108488)
Summary: This diff adds another option to create cuda pinned memory using cudaHostRegister.

Differential Revision: D45843715

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108488
Approved by: https://github.com/zdevito
2023-10-06 04:13:02 +00:00
Kazuaki Ishizaki
aa3629ee3e Fix typo under docs directory (#110359)
This PR fixes typo in `.rst` files under docs directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110359
Approved by: https://github.com/kit1980
2023-10-03 16:36:05 +00:00
FFFrog
d4990ad5a1 Fix the example in the extending.func.rst (#109279)
As the title shown ,the `backward` function is missing the definition of `ind` and `ind_inv`, which will lead to error when calling backward
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109279
Approved by: https://github.com/zou3519
2023-09-14 17:29:39 +00:00
Zachary DeVito
40cbda274b document memory snapshotting (#107660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107660
Approved by: https://github.com/albanD
ghstack dependencies: #107171, #107399
2023-08-24 19:20:03 +00:00
Jane Xu
515aa993e3 Document post acc grad hooks in backward hooks execution (#107323)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107323
Approved by: https://github.com/soulitzer, https://github.com/albanD
2023-08-22 18:37:03 +00:00
David Radley
dbc2216800 Add autograd modes table to docs (#104774)
Fixes #104461

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104774
Approved by: https://github.com/soulitzer
2023-07-08 03:14:10 +00:00
Aleksei Nikiforov
c42fd73cf9 Add functions to get and set default endianness in load() functions (#101973)
By default interpret tensor data as native endian, but add an option to interpret data as little endian or big endian.

Related to #101688

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101973
Approved by: https://github.com/mikaylagawarecki
2023-07-06 20:12:56 +00:00
Mikayla Gawarecki
981f24e806 Add docstring to torch.serialization.register_package (#104046)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104046
Approved by: https://github.com/albanD
2023-06-26 23:28:32 +00:00
ZhaoqiongZ
7cef7195f6 [draft] Update Multiprocessing best practices with CPU device (#103229)
Fixes [#102498](https://github.com/pytorch/pytorch/issues/102498)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103229
Approved by: https://github.com/mingfeima, https://github.com/svekars, https://github.com/jgong5
2023-06-25 06:26:40 +00:00
albanD
4143b6b89b Add torch_dispatch and modes to extending.rst note (#102087)
The following subjects are not in this PR and will be done in a follow up:
- Go through torch_function section and update to the latest phrasing and link to the proper new sections
- Go through torch.library and custom device docs to add links to the new sections as appropriate
- Top level explanations on which component should be used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102087
Approved by: https://github.com/janeyx99
2023-06-22 12:56:35 +00:00
Rickey K. Liang
807d81155f [CUDA][CUBLAS] Fix BF16 reduced precision reduction note in Numerical accuracy docs (#101884)
Fixes #100966

Ref #101044

Align implementation and documentation. (This is what's previously missed from the above issue and PR)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101884
Approved by: https://github.com/eqy, https://github.com/ezyang
2023-05-21 17:38:00 +00:00
Ran Ding
b5c8d0359c Update autograd.rst (#101007)
Fixes #ISSUE_NUMBER

typo fix and small change to improve clarity

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101007
Approved by: https://github.com/lezcano, https://github.com/anjali411
2023-05-12 11:47:51 +00:00
eqy
33f3dca6b5 [CUDA][CUBLAS] Fix BF16 reduced precision reduction note in docs (#101044)
#100966

CC @ngimel @ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101044
Approved by: https://github.com/ngimel
2023-05-10 06:50:58 +00:00
eqy
6e2efd16d8 [CUDA][CUBLAS] Add cuBLAS workspace allocation behavior to docs (#100919)
Adding to the docs for now, hopefully we can move to `cudaMallocAsync`-backed cuBLAS workspaces soon which should alleviate the recent confusion around `cuBLAS` "leaking" memory through workspaces.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100919
Approved by: https://github.com/ngimel
2023-05-10 06:40:26 +00:00
Richard Barnes
9c185b6b46 [codemod] Replace hasattr with getattr in caffe2/docs/source/notes/extending.rst (#100598)
Summary:
The pattern
```
X.Y if hasattr(X, "Y") else Z
```
can be replaced with
```
getattr(X, "Y", Z)
```

The [getattr](https://www.w3schools.com/python/ref_func_getattr.asp) function gives more succinct code than the [hasattr](https://www.w3schools.com/python/ref_func_hasattr.asp) function. Please use it when appropriate.

**This diff is very low risk. Green tests indicate that you can safely Accept & Ship.**

Test Plan: Sandcastle

Differential Revision: D44886464

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100598
Approved by: https://github.com/Skylion007
2023-05-04 16:36:15 +00:00
Svetlana Karslioglu
d425da8bf3 Replace master with main in links and docs/conf.py (#100176)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100176
Approved by: https://github.com/albanD, https://github.com/malfet
2023-05-02 18:20:32 +00:00
Richard Zou
6b9e22f3f6 Clarify the saving of intermediates in the "extending torch.func" docs (#98020)
Fixes https://github.com/pytorch/pytorch/issues/97260

We got some feedback that the page reads like "in order to save an input
for backward, you must return it as an output of the
autograd.Function.forward".

Doing so actually raises an error (on master and as of 2.1), but results
in an ambiguous situation on 2.0.0. To avoid more users running into
this, we clarify the documentation so it doesn't read like the above
and clearly mentions that you can save things from the inputs or
outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98020
Approved by: https://github.com/soulitzer, https://github.com/kshitij12345
2023-03-31 13:57:37 +00:00
Kazuaki Ishizaki
50ed38a7eb Fix typo under docs directory (#97202)
This PR fixes typo in `.rst` files under docs directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97202
Approved by: https://github.com/kit1980
2023-03-21 01:24:10 +00:00
Xuehai Pan
8d45f555d7 [BE] [1/3] Rewrite super() calls in caffe2 and benchmarks (#94587)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587
Approved by: https://github.com/ezyang
2023-02-11 18:19:48 +00:00
double7
685108b201 [docs] Fix incorrect wrapping of function (#94446)
The sample code of document incorrectly wraps the function decorator. To fix this, update the attributes of `func` based on `torch_function`.

Fixes #94305

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94446
Approved by: https://github.com/ezyang
2023-02-09 16:01:10 +00:00
soulitzer
77cbaedd5c [docs] Add section about tensor hooks on in-place in autograd note (#93116)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93116
Approved by: https://github.com/albanD
2023-02-01 17:35:21 +00:00
Felix Divo
219e9533f0 Improve autograd doc on complex numbers (#93065)
A tiny change to fix formatting and clarify a bit in [this section](https://pytorch.org/docs/stable/notes/autograd.html#what-are-complex-derivatives).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93065
Approved by: https://github.com/albanD
2023-01-27 09:36:38 +00:00
Richard Zou
98b78aa11c [autograd.Function] setup_context always appears on the Function (#92312)
Previously, we used the existence of setup_context to switch between if
forward should take a ctx object or not.

To be consistent with all other staticmethod (which always exist on the
autograd.Function), this PR change it so that we use IF setup_context
gets overriden by the user to switch between if forward should take a
ctx object or not.

Fixes https://github.com/pytorch/pytorch/issues/91451

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92312
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-01-18 02:55:42 +00:00
soulitzer
88366a9075 Document hooks ordering behavior in the autograd note (#91667)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91667
Approved by: https://github.com/albanD
2023-01-18 00:20:13 +00:00
Richard Zou
2f9166ef89 [autograd.Function] Cleanup asymmetry in generate_vmap_rule and vmap (#91787)
This PR:
- changes generate_vmap_rule to either be True or False. Previously it
  could be True, False, or not set. This simplifies the implementation a
  bit.
- changes the vmap staticmethod to always be on the autograd.Function
  rather than sometimes defined.
  This is how the other staticmethod (forward, backward, jvp) are
  implemented and allows us to document it.

There are 4 possible states for the autograd.Function w.r.t. to the
above:
- generate_vmap_rule is True, vmap staticmethod overriden. This raises
  an error when used with vmap.
- generate_vmap_rule is False, vmap staticmethod overriden. This is
  valid.
- generate_vmap_rule is True, vmap staticmethod not overriden. This is
  valid.
- generate_vmap_rule is False, vmap staticmethod not overriden. This
  raises an error when used with vmap.

Future:
- setup_context needs the same treatment, but that's a bit tricker to
  implement.

Test Plan:
- new unittest
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91787
Approved by: https://github.com/soulitzer
2023-01-17 13:36:34 +00:00
Emilio Castillo
07e595e88a Add device_idx to free_fn in CUDAPluggableAllocator (#91398)
This was requested by nvidia folks, track also the device_id in the free function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91398
Approved by: https://github.com/albanD
2023-01-12 05:03:48 +00:00
Kazuaki Ishizaki
4f91b8e0ee Fix typo under docs directory (#91871)
This PR fixes typo in '.rst' files under 'docs' directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91871
Approved by: https://github.com/ngimel
2023-01-10 22:33:36 +00:00
Will Constable
630ef6c711 Fix Dynamo+DDP documentation (#91832)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91832
Approved by: https://github.com/soumith, https://github.com/davidberard98
2023-01-09 17:35:49 +00:00
Richard Zou
264f5ed516 [autograd.Function] Add docs on the functorch interaction (#91452)
This PR:
- Updates autograd.Function.forward docs to reflect how you either
  define a forward with ctx or a separate forward and setup_context
- Updates the "Extending Autograd" docs to suggest the usage of
  autograd.Function with separate forward and setup_context. This should
  be the default because there is a low barrier to go from this to
  an autograd.Function that is fully supported by functorch transforms.
- Adds a new "Extending torch.func with autograd.Function" doc that
  explains how to use autograd.Function with torch.func. It also
  explains how to use generate_vmap_rule and how to manually write a
  vmap staticmethod.

While writing this, I noticed that the implementation of
setup_context staticmethod/generate_vmap_rule/vmap staticmethod are a
bit inconsistent with the other method/attributes on autograd.Function:
- https://github.com/pytorch/pytorch/issues/91451
- I'm happy to fix those if we think it is a problem, either in this PR
  or a followup (this PR is getting long, I want some initial docs
  out that I can point early adopters at, and fixing the problems in the
  future isn't really BC-breaking).

Test Plan:
- view docs preview
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91452
Approved by: https://github.com/soulitzer
2023-01-04 00:28:19 +00:00
bowen0701
e803d336eb Fix missing indentation in serialization.rst (#91253)
Fixes #ISSUE_NUMBER

In serialization.rst, fix class ControlFlowModule's forward(): missing indentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91253
Approved by: https://github.com/kit1980
2022-12-21 20:14:44 +00:00
Eddie Yan
8b617f813d [cuBLAS] Add an option to disable reduced precision reductions for BF16 GEMM (#89172)
Essentially the same change as #67946, except that the default is to disallow reduced precision reductions in `BFloat16` GEMMs (for now). If performance is severely regressed, we can change the default, but this option appears to be necessary to pass some `addmm` `BFloat16` tests on H100.

CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89172
Approved by: https://github.com/ngimel
2022-12-21 18:58:28 +00:00
Arek Sredzki
44dac51c36 Improve Autograd Documentation Clarity (#89401)
This makes minor adjustments to the autograd docs, improving clarity and resolving grammatical errors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89401
Approved by: https://github.com/kit1980
2022-12-06 06:45:04 +00:00
Will Constable
447283752c Update DDP docs for Dynamo/DDPOptimizer (#89096)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89096
Approved by: https://github.com/msaroufim
2022-11-30 05:50:12 +00:00
eqy
8321066031 Tweak formatting of note on macros (#89598)
For readability when viewing the rendered file e.g., from the browser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89598
Approved by: https://github.com/kit1980
2022-11-28 20:42:30 +00:00
Emilio Castillo
c9d4390d13 Add Pluggable CUDA allocator backend (#86786)
Fixes #43144

This uses the Backend system added by [82682](https://github.com/pytorch/pytorch/pull/82682) to change allocators dynamically during the code execution. This will allow us to use RMM, use CUDA managed memory for some portions of the code that do not fit in GPU memory. Write static memory allocators to reduce fragmentation while training models and improve interoperability with external DL compilers/libraries.

For example, we could have the following allocator in c++

```c++
#include <sys/types.h>
#include <cuda_runtime_api.h>
#include <iostream>

extern "C" {
void* my_malloc(ssize_t size, int device, cudaStream_t stream) {
   void *ptr;
   std::cout<<"alloc "<< size<<std::endl;
   cudaMalloc(&ptr, size);
   return ptr;
}

void my_free(void* ptr) {
   std::cout<<"free "<<std::endl;
   cudaFree(ptr);
}
}
```

Compile it as a shared library
```
nvcc allocator.cc -o alloc.so -shared --compiler-options '-fPIC'
```

And use it from PyTorch as follows

```python
import torch

# Init caching
# b = torch.zeros(10, device='cuda')
new_alloc = torch.cuda.memory.CUDAPluggableAllocator('alloc.so', 'my_malloc', 'my_free')
old = torch.cuda.memory.get_current_allocator()
torch.cuda.memory.change_current_allocator(new_alloc)
b = torch.zeros(10, device='cuda')
# This will error since the current allocator was already instantiated
torch.cuda.memory.change_current_allocator(old)
```

Things to discuss
- How to test this, needs compiling external code ...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86786
Approved by: https://github.com/albanD
2022-11-23 17:54:36 +00:00
lezcano
d453b3c4d4 Add a note on the stability of linalg functions. (#88313)
This was long-due, as it keeps comming up in issues.

Fixes https://github.com/pytorch/pytorch/issues/85950
Fixes https://github.com/pytorch/pytorch/issues/59720
Fixes https://github.com/pytorch/pytorch/issues/59782

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88313
Approved by: https://github.com/soumith, https://github.com/mruberry
2022-11-07 22:44:23 +00:00
Codrin Popa
5b767d404e Modified roundup_power2_divisions to specify the number of divisions for each power of two interval (#87290)
Summary:
Improved roundup_power2_divisions knob so it allows better control of rouding in the PyTorch CUDA Caching Allocator.

This new version allows setting the number of divisions per power of two interval starting from 1MB and ending at 64GB and above. An example use case is when rouding is desirable for small allocations but there are also very large allocations which are persistent, thus would not benefit from rounding and take up extra space.

Test Plan: Tested locally

Differential Revision: D40103909

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87290
Approved by: https://github.com/zdevito
2022-11-04 19:31:16 +00:00
Pruthvi Madugundu
fbd08fb358 Introduce TORCH_DISABLE_GPU_ASSERTS (#84190)
- Asserts for CUDA are enabled by default
- Disabled for ROCm by default by setting `TORCH_DISABLE_GPU_ASSERTS` to `ON`
- Can be enabled for ROCm by setting above variable to`OFF` during build or can be forcefully enabled by setting `ROCM_FORCE_ENABLE_GPU_ASSERTS:BOOL=ON`

This is follow up changes as per comment in PR #81790, comment [link](https://github.com/pytorch/pytorch/pull/81790#issuecomment-1215929021)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84190
Approved by: https://github.com/jeffdaily, https://github.com/malfet
2022-11-04 04:43:05 +00:00
PyTorch MergeBot
0fa23663cc Revert "Introduce TORCH_DISABLE_GPU_ASSERTS (#84190)"
This reverts commit 1e2c4a6e0e.

Reverted https://github.com/pytorch/pytorch/pull/84190 on behalf of https://github.com/malfet due to Needs internal changes, has to be landed via co-dev
2022-11-02 18:13:37 +00:00
Pruthvi Madugundu
1e2c4a6e0e Introduce TORCH_DISABLE_GPU_ASSERTS (#84190)
- Asserts for CUDA are enabled by default
- Disabled for ROCm by default by setting `TORCH_DISABLE_GPU_ASSERTS` to `ON`
- Can be enabled for ROCm by setting above variable to`OFF` during build or can be forcefully enabled by setting `ROCM_FORCE_ENABLE_GPU_ASSERTS:BOOL=ON`

This is follow up changes as per comment in PR #81790, comment [link](https://github.com/pytorch/pytorch/pull/81790#issuecomment-1215929021)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84190
Approved by: https://github.com/jeffdaily, https://github.com/malfet
2022-11-02 17:41:57 +00:00
Kazuaki Ishizaki
72ec1b5fc1 Fix typo under docs directory (#87583)
This PR fixes typo in `.rst` files under docs directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87583
Approved by: https://github.com/kit1980
2022-10-24 23:52:44 +00:00
albanD
9db7270ee7 Small update to Module note (#87142)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87142
Approved by: https://github.com/cpuhrsch
2022-10-17 22:56:49 +00:00
Jan Margeta
e85dbcc9b0 [docs] Fix ScalarTensor __repr__ in Extending PyTorch example (#86330)
This PR fixes the __repr__ of the `ScalarTensor` class in the Extending PyTorch example to correspond with the class name instead of `DiagonalTensor`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86330
Approved by: https://github.com/bdhirsh
2022-10-17 20:01:10 +00:00
Kshiteej K
54ee95c8ec [nn] module: full_backward_pre_hook (#86700)
Fixes https://github.com/pytorch/pytorch/issues/42824

* [x] Test
* [x] Doc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86700
Approved by: https://github.com/soulitzer
2022-10-13 17:36:39 +00:00
Daniel Dale
ce56ee11fd Extend torch.cuda.is_available() to attempt an NVML-based CUDA availability assessment when explicitly requested by the user (#85951)
Fixes #83973 (This is a substitute PR for https://github.com/pytorch/pytorch/pull/85024)

First of all, thanks for your invaluable contributions to PyTorch everyone!

Given how extensively `torch.cuda.is_available` is used in the PyTorch ecosystem, IMHO it's worthwhile to provide downstream libraries/frameworks/users the ability to alter the default behavior of `torch.cuda.is_available` in the context of their PyTorch usage.

I'm confident there are many current and future such use cases which could benefit from leveraging a weakened, NVML-based `torch.cuda.is_available` assessment at a downstream framework's explicit direction (thanks @malfet 81da50a972 !). Though one could always patch out the `torch.cuda.is_available` function with another implementation in a downstream library, I think this environmental variable based configuration option is more convenient and the cost to including the option is quite low.

As discussed in https://github.com/pytorch/pytorch/pull/85024#issuecomment-1261542045, this PR gates new non-default NVML-based CUDA behavior with an environmental variable (PYTORCH_NVML_BASED_CUDA_CHK) that allows a user/framework to invoke non-default, NVML-based `is_available()` assessments if desired.

Thanks again for your work everyone!
@ngimel @malfet @awaelchli

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85951
Approved by: https://github.com/ngimel
2022-10-12 18:37:50 +00:00
Eddie Yan
25725fd624 (Re-open) Adds cudaMallocAsync as an alternative backend for the CUDA allocator (#82682)
Rebased version of @mcarilli 's cudaMallocAsync #65365 for continued testing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82682
Approved by: https://github.com/ngimel
2022-10-12 03:44:21 +00:00
Codrin Popa
d401732baa Added roundup_bypass_threshold_mb knobs to the PyTorch Caching Allocator (#85940)
Summary:
Added an additional roundup knob( ``roundup_bypass_threshold_mb``) to bypass rounding the requested allocation size, for allocation requests larger than the threshold value (in MB). This can help reduce the memory footprint when making large allocations that are expected to be persistent or have a large lifetime.

Differential Revision: D39868104

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85940
Approved by: https://github.com/zdevito
2022-10-03 16:56:22 +00:00
Kazuaki Ishizaki
bc57306bdd Fix typo under docs directory and RELEASE.md (#85896)
This PR fixes typo in rst files under docs directory and `RELEASE.md`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85896
Approved by: https://github.com/kit1980
2022-09-29 21:41:59 +00:00
Eddie Yan
d892d5d682 [CUBLAS][TF32][CUDNN] Update numerical_accuracy.rst (#79537)
CC @mruberry @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79537
Approved by: https://github.com/ngimel, https://github.com/mruberry
2022-09-07 18:30:26 +00:00
Christian Jauvin
089101fc82 Fix small typo in cuda.rst (#84012)
This fixes a very minor typo in the CUDA semantics doc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84012
Approved by: https://github.com/malfet
2022-08-26 04:53:49 +00:00
soulitzer
e60f8f4f60 Improve autograd custom function docs (#81340)
Fixes https://github.com/pytorch/pytorch/issues/81223

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81340
Approved by: https://github.com/albanD
2022-07-21 19:54:30 +00:00
Danielle Pintz
8926b5b9c2 Fix typos in docs: Profiler and CUDA semantics (#80406)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80406
Approved by: https://github.com/robieta
2022-07-13 18:53:02 +00:00
eqy
eff74ed7bd [AMP] Use generic autocast in example, specify dtype (#79579)
CC @mruberry @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79579
Approved by: https://github.com/mruberry, https://github.com/ngimel
2022-06-17 21:32:51 +00:00
Rhys Goodall
62ba548cac [DOC] Missing line in serialization notes (#79454)
Small typo fix to serialization docs where there was a missing line in one of the examples.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79454
Approved by: https://github.com/mruberry
2022-06-17 18:26:47 +00:00
Mike Ruberry
1d47e0df5a Updates TF32 docs (#79401)
Updates TF32 docs to reflect PyTorch 1.12 updates.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79401
Approved by: https://github.com/ngimel
2022-06-13 21:02:00 +00:00
lezcano
a8ea58afee Add randomness case to the autograd notes
I also took this chance to clean a bit the sphinx formatting and
reworded a few minor things.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78617

Approved by: https://github.com/soulitzer, https://github.com/albanD
2022-06-08 21:27:03 +00:00
Kurt Mohler
a4403c17c7 Improve reproducibility docs for RNG (#78849)
* Mention that operations may change RNG state and how to deal with it
* Add link to Reproducibility note in `use_deterministic_algorithms` docs
* Also fix a broken link

Fixes #77206

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78849
Approved by: https://github.com/mruberry
2022-06-06 14:53:59 +00:00
albanD
b30b1f3dec update mps note with more details (#78669)
Follow up to the comments in https://github.com/pytorch/pytorch/pull/77767#pullrequestreview-978807521
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78669
Approved by: https://github.com/kulinseth, https://github.com/anjali411
2022-06-02 20:53:19 +00:00
vfdev
642fc94501 Update extending.rst (#78707)
Follow-up fix for https://github.com/pytorch/pytorch/pull/78073 : https://github.com/pytorch/pytorch/pull/78073#discussion_r887621219

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78707
Approved by: https://github.com/albanD
2022-06-02 17:24:00 +00:00
Philip Meier
288b23bc52 fix MetadataTensor example (#78073)
```py
[bar if bar for bar in foo]
```

is invalid Python syntax. The `if` clause needs to be at the end:

```py
[bar for bar in foo if bar]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78073
Approved by: https://github.com/albanD
2022-05-31 21:34:19 +00:00
Alban Desmaison
dcd2ba3538 improve mps note to describe the different functions available (#77767)
Fixing https://github.com/pytorch/pytorch/issues/77748
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77767
Approved by: https://github.com/soulitzer
2022-05-18 20:17:23 +00:00
Jeff Daily
de86146c61 rocblas alt impl during backward pass only (#71881)
In preparation of adopting future rocblas library options, it is necessary to track when the backward pass of training is executing.  The scope-based helper class `BackwardPassGuard` is provided to toggle state.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71881
Approved by: https://github.com/albanD
2022-05-18 19:42:58 +00:00
Kulin Seth
e011a8e18b Enable PyTorch operations on MPS Backend. (#77343)
Add PyTorch operations to MPS backend.

- https://github.com/pytorch/pytorch/issues/77394
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77343
Approved by: https://github.com/albanD
2022-05-13 18:28:53 +00:00
James Reed
286d788029 Properly capitalize PyTorch (#77308)
pytorch -> PyTorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77308
Approved by: https://github.com/bertmaher, https://github.com/mthrok
2022-05-12 18:07:32 +00:00
Alban Desmaison
d5210a4269 Add gradient choice detail to autograd doc
Trying to clarify what our backward functions should compute.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76898
Approved by: https://github.com/soulitzer, https://github.com/Lezcano
2022-05-06 21:12:25 +00:00
Smark
ab57876420 fix docs error in Autograd Mechanics
Fixes #74682

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74807
Approved by: https://github.com/albanD
2022-03-29 18:32:16 +00:00
leslie-fang-intel
3a112ebb57 add autocast cpu doc
As discussed in https://github.com/pytorch/pytorch/issues/55374#issuecomment-968333614, here we update the cpu autocast operation list in autocast API document.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68567
Approved by: https://github.com/ezyang
2022-03-22 02:02:43 +00:00
Jaewon Lee
11ea09effc [CUDACachingAlloc/GPUInference] Implement garbage collection without GPU sync (#74261)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74261

### Goal
Implement a cheap way to reclaim GPU memory (garbage collection) without incurring GPU sync.

### Why do we need this?
Currently, there are only two ways to reclaim GPU memory block already assigned to a particular stream.

- `release_available_cached_blocks(params)`: Free blocks exceeding the `CachingAllocatorConfig::max_split_size()` until we can satisfy the request.

Issue: If the `max_split_size` is unset (default), this function is a no-op. Even if this is set, the reclamation is quite conservative (e.g., never frees blocks under max_split_size).

- `release_cached_blocks()`: Waits for all the in-flight events and then reclaim blocks.

Issue: 'waiting for all event' is very expensive as it will likely stall all the GPU operations. Many GPU applications without a proper handling of potential GPU throttling would suffer/crash.

### Proposed idea
- If the garbage collection threshold is set, try to reclaim some memory blocks *without* synchronization. It should be safe to do so, as `release_available_cached_blocks` essentially does the same thing (but less aggressively).
- GC is triggered only when we fail to serve a `malloc` request from the block pool. No need to free blocks when the block pool is functioning just fine.
- Prioritize reclaiming blocks that weren't reused for long time. Reclamation stops once the used memory capacity < threshold.
- This code path is totally optional; by default it won't be invoked.

Test Plan:
- Unit tests
- Manually checked that the GPU memory usage stays as indicated by the garbage collector. If not the caching allocator at least tries to keep freeing the blocks.

Reviewed By: jianyuh

Differential Revision: D34482514

fbshipit-source-id: d5eae62ac60b94b0bca851f9d233a092d086e3c2
(cherry picked from commit 05780f1ed4b176f05e765b2411c9eaa2eaeb48b0)
2022-03-21 18:46:02 +00:00
Banit Agrawal
ac3effd150 [PyTorch GPU Allocator] Better use of blocks with rounding of allocation sizes (#74213)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74213

In the current CUDACachingAllocator, the sizes are rounded up in multiple of blocks size of 512, so this works for smaller sizes. However for large sizes, we can have lots of different size blocks in the larger pool. This is problematic when we have variable batch sizes 1001, 1021, 1023 -> all will go to different block size and will create different size of blocks. This will create lots of unused blocks and will waste GPU memory capacity.

This diff adds a rounding approach to allocation size. It rounds up the size to nearest power-of-2 divisions and the power2-division can be changed with env variable setting.

   For example, if we need to round-up  size of1200 and if number of divisions is 4,
   the size 1200 lies between 1024 and 2048 and if we do 4 divisions between
   them, the values are 1024, 1280, 1536, and 1792. So the function will
   return 1280 as the nearest ceiling of power-2 division.

env setting:
   export PYTORCH_CUDA_ALLOC_CONF=roundup_power2_divisions:4
ghstack-source-id: 151446017

Reviewed By: ezyang

Differential Revision: D34868036

fbshipit-source-id: 494785add16e6b37c920dcb5a2b81d4c637b554a
(cherry picked from commit 548454ccacbd8700e7ffd2d762e40b4ba37abbae)
2022-03-16 02:53:53 +00:00
Rohit Goswami
801abc0cdd MAINT, DOC: Trivial spellings and warnings (#72745)
Summary:
Fixes N/A.
Just minor annoyances.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72745

Reviewed By: samdow

Differential Revision: D34216016

Pulled By: albanD

fbshipit-source-id: b65600b50e41a1dd7bf7d076b0dd3e2d1c99caf9
(cherry picked from commit b959392a5f)
2022-02-14 21:55:19 +00:00
Felix Divo
340fae4363 [Doc] Better formatting in autograd.rst (#72586)
Summary:
See title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72586

Reviewed By: soulitzer

Differential Revision: D34177704

Pulled By: albanD

fbshipit-source-id: 1adf6ebed4f64ec4d8fff160df300c8e6ee528ea
(cherry picked from commit bbb586d67d)
2022-02-11 22:46:10 +00:00
Felix Divo
25fba4a019 [DOC] Add link to "double backward" from "extending pytorch" page (#72584)
Summary:
It is probably the most user friendly to link to that (lesser known?) feature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72584

Reviewed By: soulitzer

Differential Revision: D34173999

Pulled By: albanD

fbshipit-source-id: 99fff7a55412faf54888f8317ab2388f4d7d30e4
(cherry picked from commit 2191ee7657)
2022-02-11 20:34:13 +00:00
Mike Ruberry
9b9b878c89 Fixes jiterator cache macro include + updates CUDA note with cache variables (#71452)
Summary:
Per title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71452

Reviewed By: ngimel

Differential Revision: D33646495

Pulled By: mruberry

fbshipit-source-id: bbf627e6d7a724a83a3ea2ae9c0f50430f8d578e
(cherry picked from commit d1e72b144a)
2022-01-19 03:45:05 +00:00
Rohan Varma
4fd1992a60 [Docs][BE] DDP doc fix (#71363)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71363

Looks like DDP example is currently broken as per
https://discuss.pytorch.org/t/official-ddp-example-is-broken/141493. Fix the
issue by setting the correct env variable.
ghstack-source-id: 147080377

Test Plan: CI

Reviewed By: mrshenli

Differential Revision: D33607250

fbshipit-source-id: e0e7d03cc365c186253b959c4c5405a5e3609218
(cherry picked from commit 32472884ec)
2022-01-18 22:24:51 +00:00
Jake Tae
23f902f7e4 Fix incorrect variable in autograd docs (#70884)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/68362.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70884

Reviewed By: mruberry

Differential Revision: D33463331

Pulled By: ngimel

fbshipit-source-id: 834ba9c450972710e0424cc92af222551f0b4a4a
2022-01-06 20:53:10 -08:00
Peter Bell
e279963eef Remove remaining THC code (#69039)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69039

Test Plan: Imported from OSS

Reviewed By: anjali411

Differential Revision: D32872476

Pulled By: ngimel

fbshipit-source-id: 7972aacc24aef9450fb59b707ed6396c501bcb31
2021-12-08 12:18:08 -08:00
Rodrigo Bermúdez Schettino
1a202b0c39 Docs: Fix broken code syntax in autograd.rst (#69362)
Summary:
The backticks around `nn.Parameters` were not rendered correctly because the word was enclosed in an italics block.
Spotted the issue on https://pytorch.org/docs/stable/notes/autograd.html#locally-disable-grad-doc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69362

Reviewed By: zou3519

Differential Revision: D32924093

Pulled By: albanD

fbshipit-source-id: 5a310ac3f3d13a5116f7aa911817b9452eee711d
2021-12-07 12:03:15 -08:00
Michael Carilli
da023611d7 [CUDA graphs] Fixes make_graphed_callables example typos (#69379)
Summary:
cc mcarilli

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69379

Reviewed By: mruberry

Differential Revision: D32841260

Pulled By: ngimel

fbshipit-source-id: a7d0b9db0578526907547b201eddd55827812b63
2021-12-03 16:51:14 -08:00
Elio
088a4feb41 Update the documentation for AMP with DataParallel (#69218)
Summary:
Following https://github.com/pytorch/pytorch/issues/60540 and pull request https://github.com/pytorch/pytorch/issues/43102

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69218

Reviewed By: gchanan

Differential Revision: D32803814

Pulled By: ngimel

fbshipit-source-id: 06fdbbee2c7734153271be70ec4bc24263c8c367
2021-12-03 14:58:47 -08:00
Vansh Sharma
ff125a3624 Minor changes in documentation (#68557)
Summary:
Fixed some small typos

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68557

Reviewed By: mruberry

Differential Revision: D32538749

Pulled By: ngimel

fbshipit-source-id: 09a9cd4031463b6a40d7307bd8fcb7d364444ac3
2021-11-18 17:57:16 -08:00
eqy
790763b0fe Add an option to disable reduced precision reductions for FP16 GEMM (#67946)
Summary:
https://github.com/pytorch/pytorch/issues/67578 disabled reduced precision reductions for FP16 GEMMs. After benchmarking, we've found that this has substantial performance impacts for common GEMM shapes (e.g., those found in popular instantiations of multiheaded-attention) on architectures such as Volta. As these performance regressions may come as a surprise to current users, this PR adds a toggle to disable reduced precision reductions
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = `
rather than making it the default behavior.

CC ngimel ptrblck
stas00 Note that the behavior after the previous PR can be replicated with
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67946

Reviewed By: zou3519

Differential Revision: D32289896

Pulled By: ngimel

fbshipit-source-id: a1ea2918b77e27a7d9b391e030417802a0174abe
2021-11-09 17:27:20 -08:00
Alban Desmaison
708f7b1209 Update extending doc to cover forward mode AD (#66962)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66962

Reviewed By: VitalyFedyunin

Differential Revision: D31897782

Pulled By: albanD

fbshipit-source-id: 64164783a14a7ed4cedc17da28f1181d9807a499
2021-10-27 14:18:38 -07:00
Natalia Gimelshein
fdd9f49cf5 add a note on numerical accuracy (#65947)
Summary:
Per title
Fixes https://github.com/pytorch/pytorch/issues/54437

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65947

Reviewed By: albanD

Differential Revision: D31612445

Pulled By: ngimel

fbshipit-source-id: 5c155891a088aef3b9813f253d0dc1ee4d51ae1c
2021-10-13 12:43:55 -07:00
Rodrigo Berriel
7e772e7685 Update link to tutorial on defining NN modules (#65534)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65527. Please, see my comment in the issue: https://github.com/pytorch/pytorch/issues/65527#issuecomment-925863193. The file was renamed in ce58d5904c (diff-e5ef486bd89eb38de15752211d9437953681b8caa8f44d7c86bb820d13151df2), but the link in this repository was not updated.

It doesn't change the fact that the old link is still working, but I guess this has to be fixed in [pytorch/tutorials](https://github.com/pytorch/tutorials) instead of here.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65534

Reviewed By: soulitzer

Differential Revision: D31144269

Pulled By: H-Huang

fbshipit-source-id: f70744a21113b7dc84510e2992d87f0fed793985
2021-09-23 11:26:50 -07:00
Rodrigo Berriel
f0ada4bd54 [docs] Remove .data from some docs (#65358)
Summary:
Related to https://github.com/pytorch/pytorch/issues/30987. Fix the following task:

- [ ] Remove the use of `.data` in all our internal code:
  - [ ] ...
  - [x] `docs/source/scripts/build_activation_images.py` and `docs/source/notes/extending.rst`

In `docs/source/scripts/build_activation_images.py`, I used `nn.init` because the snippet already assumes `nn` is available (the class inherits from `nn.Module`).

cc albanD

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65358

Reviewed By: malfet

Differential Revision: D31061790

Pulled By: albanD

fbshipit-source-id: be936c2035f0bdd49986351026fe3e932a5b4032
2021-09-21 06:32:31 -07:00
Michael Carilli
e3210ca184 [CUDA graphs] Beta, not prototype (#65247)
Summary:
Powers have decided this API should be listed as beta.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65247

Reviewed By: malfet

Differential Revision: D31057940

Pulled By: ngimel

fbshipit-source-id: 137b63cbd2c7409fecdc161a22135619bfc96bfa
2021-09-20 13:32:36 -07:00
albanD
473e55d5b2 Use classmethods for overrides (#64841)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64841

Test Plan: Imported from OSS

Reviewed By: heitorschueroff

Differential Revision: D30991424

Pulled By: albanD

fbshipit-source-id: 551e2119768f3a4292713f3bfa83930f5506adbd
2021-09-17 08:32:49 -07:00
Jane Xu
4c4c03124b Remove old references to 9.2 in documentation (#65059)
Summary:
Removes references in .rst and README.md and comments in the Dockerfile

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65059

Reviewed By: malfet

Differential Revision: D30961110

Pulled By: janeyx99

fbshipit-source-id: 702a9a81bf08125ec4ac38bc656fc2c128c30018
2021-09-16 13:24:05 -07:00
Michael Carilli
36cac2be4d [CUDA graphs] moves memory sharing intro paragraph (#64996)
Summary:
Puts memory sharing intro under Sharing memory... header, where it should have been all along.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64996

Reviewed By: mruberry

Differential Revision: D30948619

Pulled By: ngimel

fbshipit-source-id: 5d9dd267b34e9d3fc499d4738377b58a22da1dc2
2021-09-14 17:53:43 -07:00
Michael Carilli
8d08b103be [CUDA graphs] Prototype API and documentation (#63269)
Summary:
RFC: https://github.com/pytorch/pytorch/issues/61880

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63269

Reviewed By: mruberry

Differential Revision: D30596643

Pulled By: ngimel

fbshipit-source-id: b1f8061406364b667e2c2d4d30fbce1f0d8456be
2021-08-31 13:34:23 -07:00
Joel Schlosser
196fd3ee7a Modules note v2 (#63963)
Summary:
This PR expands the [note on modules](https://pytorch.org/docs/stable/notes/modules.html) with additional info for 1.10.

It adds the following:
* Examples of using hooks
* Examples of using apply()
* Examples for ParameterList / ParameterDict
* register_parameter() / register_buffer() usage
* Discussion of train() / eval() modes
* Distributed training overview / links
* TorchScript overview / links
* Quantization overview / links
* FX overview / links
* Parametrization overview / link to tutorial

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63963

Reviewed By: albanD

Differential Revision: D30606604

Pulled By: jbschlosser

fbshipit-source-id: c1030b19162bcb5fe7364bcdc981a2eb6d6e89b4
2021-08-27 11:30:18 -07:00
Jithun Nair
730ce29baf Add note on ifdefing based on CUDA_VERSION for ROCm path (#62850)
Summary:
CUDA_VERSION and HIP_VERSION follow very unrelated versioning schemes, so it does not make sense to use CUDA_VERSION to determine the ROCm path. This note explicitly addresses it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62850

Reviewed By: mruberry

Differential Revision: D30547562

Pulled By: malfet

fbshipit-source-id: 02990fa66a88466c2330ab85f446b25b78545150
2021-08-25 15:02:03 -07:00
Victor Quach
b95ce1591d Add docs describing saved tensor hooks (#62362)
Summary:
Add section to the Autograd mechanics docs to describe the recently
exposed saved tensors (https://github.com/pytorch/pytorch/issues/52451), how to register packing / unpacking
hooks (https://github.com/pytorch/pytorch/issues/60975) and how to use default hooks (https://github.com/pytorch/pytorch/issues/61834)

Sister PR: https://github.com/pytorch/pytorch/issues/62361 (will add a link from autograd.rst to notes/autograd in whatever PR does not land first)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62362

Reviewed By: soulitzer

Differential Revision: D30453177

Pulled By: Varal7

fbshipit-source-id: f5759977b069ff0ef36a47b08856d297691a6caa
2021-08-20 11:10:51 -07:00
soulitzer
2f615f6313 Improve custom function docs (#60312)
Summary:
- Adds some code examples for `ctx` methods and make requirements of arguments more clear
- Type annotations for `save_for_backward`, `mark_dirty`, `mark_non_differentiable`, and `set_materialize_grads` (BC-breaking?)
- Refactor `torch.autograd.Function` doc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60312

Reviewed By: VitalyFedyunin

Differential Revision: D30314961

Pulled By: soulitzer

fbshipit-source-id: a284314b65662e26390417bd2b6b12cd85e68dc8
2021-08-18 11:31:31 -07:00
kyshel
e75ed4a4b5 add comma to prevent syntax errors (#62492)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62492

Reviewed By: VitalyFedyunin

Differential Revision: D30304684

Pulled By: ezyang

fbshipit-source-id: db08ca39bcecbfd79ea50df18536bf4e87f51e15
2021-08-16 12:27:31 -07:00
cpatru
6d896cb545 Update faq.rst so OOM section mentions checkpoint (#62709)
Summary:
This FAQ has a section for CUDA OOMs where there are lots of don'ts. This limits modeling solution. Deep nets can blow up memory due to output caching during training.
It's a known problem with a known solution: to trade-off compute for memory via checkpointing.
FAQ should mention it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62709

Reviewed By: nairbv

Differential Revision: D30103326

Pulled By: ezyang

fbshipit-source-id: 3a8b465a7fbe19aae88f83cc50fe82ebafcb56c9
2021-08-05 07:40:08 -07:00
Victor Quach
5830f122f1 Add docstrings for save_on_cpu hooks (#62410)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62410

This PR adds docstrings for CPU hooks introduced in #61928.

Also uncomments the warning about pinned memory in CUDA semantics docs.

Depends on: #62361.

For now docstrings are an orphan page at https://docs-preview.pytorch.org/62410/generated/torch.autograd.graph.set_save_on_cpu_hooks.html#torch-autograd-graph-set-save-on-cpu-hooks

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D29990129

Pulled By: Varal7

fbshipit-source-id: 7a98eeee6a0abb11e2c2d9169cd1aa35ad7ba3f4
2021-08-03 17:53:45 -07:00
Michael Dagitses
58df01c3b8 clarify default value of requires_grad for tensors (#61038)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61038

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D29491984

Pulled By: dagitses

fbshipit-source-id: 7e6b7f8e81d77f38c881b86a68c17d3cf5483dad
2021-07-12 12:57:37 -07:00
Jithun Nair
336970c03e Add note on torch.distributed backends on ROCm (#58975)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58975

Reviewed By: soulitzer

Differential Revision: D29595510

Pulled By: rohan-varma

fbshipit-source-id: 384bb67fcd003d65b76e957a474406b2a38099b9
2021-07-10 03:51:19 -07:00
Michael Carilli
2fa6c7627e [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream (#60421)
Summary:
Before https://github.com/pytorch/pytorch/pull/57833, calls to backward() or grad() synced only the calling thread's default stream with autograd leaf streams at the end of backward. This made the following weird pattern safe:
```python
with torch.cuda.stream(s):
    # imagine forward used many streams, so backward leaf nodes may run on many streams
    loss.backward()
# no sync
use grads
```

but a more benign-looking pattern was unsafe:
```python
with torch.cuda.stream(s):
    # imagine forward used a lot of streams, so backward leaf nodes may run on many streams
    loss.backward()
    # backward() syncs the default stream with all the leaf streams, but does not sync s with anything,
    # so counterintuitively (even though we're in the same stream context as backward()!)
    # it is NOT SAFE to use grads here, and there's no easy way to make it safe,
    # unless you manually sync on all the streams you used in forward,
    # or move "use grads" back to default stream outside the context.
    use grads
```
mruberry ngimel and I decided backward() should have the [same user-facing stream semantics as any cuda op](https://pytorch.org/docs/master/notes/cuda.html#stream-semantics-of-backward-passes).** In other words, the weird pattern should be unsafe, and the benign-looking pattern should be safe. Implementationwise, this meant backward() should sync its calling thread's current stream, not default stream, with the leaf streams.

After https://github.com/pytorch/pytorch/pull/57833, backward syncs the calling thread's current stream AND default stream with all leaf streams at the end of backward. The default stream syncs were retained for temporary backward compatibility.

This PR finishes https://github.com/pytorch/pytorch/pull/57833's work by deleting syncs on the default stream.

With this PR, graph-capturing an entire backward() call should be possible (see the [test_graph_grad_scaling diffs](https://github.com/pytorch/pytorch/compare/master...mcarilli:streaming_backwards_remove_default_syncs?expand=1#diff-893b1eea27352f336f4cd832919e48d721e4e90186e63400b8596db6b82e7450R3641-R3642)).

** first paragraph has a formatting error which this PR should also fix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60421

Reviewed By: albanD

Differential Revision: D29370344

Pulled By: ngimel

fbshipit-source-id: 3248bc5fb92fc517db0c15c897e5d7250f67d7fe
2021-06-24 17:34:02 -07:00
Luca Wehrstedt
bb9e1150ea Revert D29342234: [pytorch][PR] [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream
Test Plan: revert-hammer

Differential Revision:
D29342234 (675cea1adb)

Original commit changeset: 98e6be7fdd85

fbshipit-source-id: 84022973248b2254210eee57402df2c4f4bc43c6
2021-06-24 04:49:28 -07:00
Michael Carilli
675cea1adb [CUDA graphs][BC-breaking] Removes post-backward syncs on default stream (#60421)
Summary:
Before https://github.com/pytorch/pytorch/pull/57833, calls to backward() or grad() synced only the calling thread's default stream with autograd leaf streams at the end of backward. This made the following weird pattern safe:
```python
with torch.cuda.stream(s):
    # imagine forward used many streams, so backward leaf nodes may run on many streams
    loss.backward()
# no sync
use grads
```

but a more benign-looking pattern was unsafe:
```python
with torch.cuda.stream(s):
    # imagine forward used a lot of streams, so backward leaf nodes may run on many streams
    loss.backward()
    # backward() syncs the default stream with all the leaf streams, but does not sync s with anything,
    # so counterintuitively (even though we're in the same stream context as backward()!)
    # it is NOT SAFE to use grads here, and there's no easy way to make it safe,
    # unless you manually sync on all the streams you used in forward,
    # or move "use grads" back to default stream outside the context.
    use grads
```
mruberry ngimel and I decided backward() should have the [same user-facing stream semantics as any cuda op](https://pytorch.org/docs/master/notes/cuda.html#stream-semantics-of-backward-passes).** In other words, the weird pattern should be unsafe, and the benign-looking pattern should be safe. Implementationwise, this meant backward() should sync its calling thread's current stream, not default stream, with the leaf streams.

After https://github.com/pytorch/pytorch/pull/57833, backward syncs the calling thread's current stream AND default stream with all leaf streams at the end of backward. The default stream syncs were retained for temporary backward compatibility.

This PR finishes https://github.com/pytorch/pytorch/pull/57833's work by deleting syncs on the default stream.

With this PR, graph-capturing an entire backward() call should be possible (see the [test_graph_grad_scaling diffs](https://github.com/pytorch/pytorch/compare/master...mcarilli:streaming_backwards_remove_default_syncs?expand=1#diff-893b1eea27352f336f4cd832919e48d721e4e90186e63400b8596db6b82e7450R3641-R3642)).

** first paragraph has a formatting error which this PR should also fix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60421

Reviewed By: VitalyFedyunin, albanD

Differential Revision: D29342234

Pulled By: ngimel

fbshipit-source-id: 98e6be7fdd8550872f0a78f9a66cb8dfe75abf63
2021-06-23 23:35:24 -07:00
Michael Wootton
2f3be2735f Don't split oversize cached blocks (#44742)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35901

This change is designed to prevent fragmentation in the Caching Allocator.  Permissive block splitting in the allocator allows very large blocks to be split into many pieces.  Once split too finely it is unlikely all pieces will be 'free' at that same time so the original allocation can never be returned.   Anecdotally, we've seen a model run out of memory failing to alloc a 50 MB block on a 32 GB card while the caching allocator is holding 13 GB of 'split free blocks'

Approach:

- Large blocks above a certain size are designated "oversize".  This limit is currently set 1 decade above large, 200 MB
- Oversize blocks can not be split
- Oversize blocks must closely match the requested size (e.g. a 200 MB request will match an existing 205 MB block, but not a 300 MB block)
- In lieu of splitting oversize blocks there is a mechanism to quickly free a single oversize block (to the system allocator) to allow an appropriate size block to be allocated.  This will be activated under memory pressure and will prevent _release_cached_blocks()_ from triggering

Initial performance tests show this is similar or quicker than the original strategy.  Additional tests are ongoing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44742

Reviewed By: zou3519

Differential Revision: D29186394

Pulled By: ezyang

fbshipit-source-id: c88918836db3f51df59de6d1b3e03602ebe306a9
2021-06-21 11:46:08 -07:00
Michael Carilli
be038d8989 [CUDA graphs] Make stream semantics of backward calls consistent with other cuda ops (ci-all edition) (#57833)
Summary:
ci-all resubmit of https://github.com/pytorch/pytorch/pull/54227.

Tests look good except for a few distributed autograd failures (pytorch_linux_xenial_cuda10_2_cudnn7_py3_multigpu_test) and rocm failures (pr/pytorch-linux-bionic-rocm4.1-py3.6).

The common denominator in rocm failures appears to be multi-gpu activity: some [multiprocess DDP failures](https://ci.pytorch.org/jenkins/job/pytorch-builds/job/pytorch-linux-bionic-rocm4.1-py3.6-test1/8115/console), some [single-process failures](https://ci.pytorch.org/jenkins/job/pytorch-builds/job/pytorch-linux-bionic-rocm4.1-py3.6-test2/8115/console) where the single process has autograd ops that span devices. jeffdaily jithunnair-amd sunway513, could one of you take a look? The streaming backward change is also beneficial to rocm, I expect.

For debugging rocm failures, I think we should ignore the multiprocess/DDP tests and focus on the single process cases. The root cause is probably the same and the single process cases are simpler.

----------------------------------

Update: Rocm failures are due to https://github.com/pytorch/pytorch/issues/59750.
2718a54032 is a workaround, to be updated once https://github.com/pytorch/pytorch/issues/59750 is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57833

Reviewed By: mruberry

Differential Revision: D28942391

Pulled By: ngimel

fbshipit-source-id: d6047e971c5f1c6386334bf3641402a92f12e2f8
2021-06-13 12:09:56 -07:00
Jeffrey Wan
a7a5992d7d Add no-grad inference mode note (#58513)
Summary:
Adds a note explaining the difference between several often conflated mechanisms in the autograd note
Also adds a link to this note from the docs in `grad_mode` and `nn.module`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58513

Reviewed By: gchanan

Differential Revision: D28651129

Pulled By: soulitzer

fbshipit-source-id: af9eb1749b641fc1b632815634eea36bf7979156
2021-05-25 13:06:54 -07:00
Jithun Nair
ab6b5fa036 Add HIP (ROCm) semantics doc (#57871)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57871

Reviewed By: agolynski

Differential Revision: D28385510

Pulled By: malfet

fbshipit-source-id: 9cf69e52d026a1cf74cc12d8727ca17ae026235e
2021-05-12 12:34:07 -07:00
albanD
d16ed1ee8a Add first draft of gradcheck note (#55966)
Summary:
You can find the latest rendered version in the `python_doc_build` CI job below, in the artifact tab of that build on circle CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55966

Reviewed By: H-Huang

Differential Revision: D28032446

Pulled By: albanD

fbshipit-source-id: 227ad37b03d39894d736c19cae3195b4d56fc62f
2021-04-27 14:33:42 -07:00
Ilqar Ramazanli
70d9be0f42 Replace duplicative s with alpha (#56804)
Summary:
It is always easier to read a document when different objects / concepts denoted with different variables / representations.
In this PR we make sure the [complex autograd](https://pytorch.org/docs/master/notes/autograd.html#autograd-for-complex-numbers) documentation, the variable of output and step size diverge.

Fixes https://github.com/pytorch/pytorch/issues/53633

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56804

Reviewed By: anjali411

Differential Revision: D27989959

Pulled By: iramazanli

fbshipit-source-id: c271590ee744c8aeeff62bfaa2295429765ef64e
2021-04-25 16:27:09 -07:00
Erjia Guan
8cf85a1152 [DataLoader][doc] Randomness for base_seed generator and NumPy seed (#56528)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56528

Tried to search across internal and external usage of DataLoader. People haven't started to use `generator` for `DataLoader`.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D27908487

Pulled By: ejguan

fbshipit-source-id: 14c83ed40d4ba4dc988b121968a78c2732d8eb93
2021-04-22 09:40:45 -07:00
Natalia Gimelshein
f94c95a2dd Revert D23752058: [pytorch][PR] Don't split oversize cached blocks
Test Plan: revert-hammer

Differential Revision:
D23752058 (67dcd62310)

Original commit changeset: ccb7c13e3cf8

fbshipit-source-id: 12ae9702135ea510e9714ed97fb75ca3b9f97c27
2021-04-14 09:24:08 -07:00
Michael Wootton
67dcd62310 Don't split oversize cached blocks (#44742)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35901

This change is designed to prevent fragmentation in the Caching Allocator.  Permissive block splitting in the allocator allows very large blocks to be split into many pieces.  Once split too finely it is unlikely all pieces will be 'free' at that same time so the original allocation can never be returned.   Anecdotally, we've seen a model run out of memory failing to alloc a 50 MB block on a 32 GB card while the caching allocator is holding 13 GB of 'split free blocks'

Approach:

- Large blocks above a certain size are designated "oversize".  This limit is currently set 1 decade above large, 200 MB
- Oversize blocks can not be split
- Oversize blocks must closely match the requested size (e.g. a 200 MB request will match an existing 205 MB block, but not a 300 MB block)
- In lieu of splitting oversize blocks there is a mechanism to quickly free a single oversize block (to the system allocator) to allow an appropriate size block to be allocated.  This will be activated under memory pressure and will prevent _release_cached_blocks()_ from triggering

Initial performance tests show this is similar or quicker than the original strategy.  Additional tests are ongoing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44742

Reviewed By: ngimel

Differential Revision: D23752058

Pulled By: ezyang

fbshipit-source-id: ccb7c13e3cf8ef2707706726ac9aaac3a5e3d5c8
2021-04-14 03:04:41 -07:00
Yukio Siraichi
93bf0ae6fc Remove legacy constructor calls from pytorch codebase. (#54142)
Summary:
Follow up from https://github.com/pytorch/pytorch/issues/53889
Related to https://github.com/pytorch/pytorch/issues/47112

Removing every occurrence of the legacy constructor call present in PyTorch at:
- _docs_
- _benchmarks_
- _test_
- _caffe2_
- _CONTRIBUTING.md_

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54142

Reviewed By: ngimel

Differential Revision: D27699450

Pulled By: mruberry

fbshipit-source-id: 530aa3f5746cc8bc1407d5d51b2bbd8075e30546
2021-04-11 15:45:17 -07:00
James Reed
ec38dda1cc Remove extra close bracket in extending.rst (#55409)
Summary:
Small typo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55409

Reviewed By: pbelevich

Differential Revision: D27611177

Pulled By: jamesr66a

fbshipit-source-id: 8a5ff702e4ab8a7eb2403432889f8b7a5a69484b
2021-04-07 21:15:46 -07:00
Peter Bell
8ac0619784 Avoid infinite recursion in __torch_function__ example (#55391)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55284

This gets the example to run but probably doesn't help the readability of the example.

Thoughts?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55391

Reviewed By: mrshenli

Differential Revision: D27621096

Pulled By: ezyang

fbshipit-source-id: d02c4fb0001e54139a167b477fd3b4a229e4dc8c
2021-04-07 20:31:46 -07:00
James Reed
c96f076248 Fix typo in extending.rst (#55408)
Summary:
Small typo in docs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55408

Reviewed By: pbelevich

Differential Revision: D27611175

Pulled By: jamesr66a

fbshipit-source-id: a83a6220054c0411329792c7ac6afceb2b699f44
2021-04-07 03:46:01 -07:00
Sam Estep
5bcbbf5373 Lint trailing newlines (#54737)
Summary:
*Context:* https://github.com/pytorch/pytorch/issues/53406 added a lint for trailing whitespace at the ends of lines. However, in order to pass FB-internal lints, that PR also had to normalize the trailing newlines in four of the files it touched. This PR adds an OSS lint to normalize trailing newlines.

The changes to the following files (made in 54847d0adb9be71be4979cead3d9d4c02160e4cd) are the only manually-written parts of this PR:

- `.github/workflows/lint.yml`
- `mypy-strict.ini`
- `tools/README.md`
- `tools/test/test_trailing_newlines.py`
- `tools/trailing_newlines.py`

I would have liked to make this just a shell one-liner like the other three similar lints, but nothing I could find quite fit the bill. Specifically, all the answers I tried from the following Stack Overflow questions were far too slow (at least a minute and a half to run on this entire repository):

- [How to detect file ends in newline?](https://stackoverflow.com/q/38746)
- [How do I find files that do not end with a newline/linefeed?](https://stackoverflow.com/q/4631068)
- [How to list all files in the Git index without newline at end of file](https://stackoverflow.com/q/27624800)
- [Linux - check if there is an empty line at the end of a file [duplicate]](https://stackoverflow.com/q/34943632)
- [git ensure newline at end of each file](https://stackoverflow.com/q/57770972)

To avoid giving false positives during the few days after this PR is merged, we should probably only merge it after https://github.com/pytorch/pytorch/issues/54967.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54737

Test Plan:
Running the shell script from the "Ensure correct trailing newlines" step in the `quick-checks` job of `.github/workflows/lint.yml` should print no output and exit in a fraction of a second with a status of 0. That was not the case prior to this PR, as shown by this failing GHA workflow run on an earlier draft of this PR:

- https://github.com/pytorch/pytorch/runs/2197446987?check_suite_focus=true

In contrast, this run (after correcting the trailing newlines in this PR) succeeded:

- https://github.com/pytorch/pytorch/pull/54737/checks?check_run_id=2197553241

To unit-test `tools/trailing_newlines.py` itself (this is run as part of our "Test tools" GitHub Actions workflow):
```
python tools/test/test_trailing_newlines.py
```

Reviewed By: malfet

Differential Revision: D27409736

Pulled By: samestep

fbshipit-source-id: 46f565227046b39f68349bbd5633105b2d2e9b19
2021-03-30 13:09:52 -07:00
Jeff Yang
475251631b docs: reference links to serialization.html (#54659)
Summary:
fixes https://github.com/pytorch/pytorch/issues/54311
https://11811979-65600975-gh.circle-artifacts.com/0/docs/generated/torch.save.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54659

Reviewed By: ailzhang

Differential Revision: D27328281

Pulled By: zou3519

fbshipit-source-id: b88d02e5407238a338d537d013a297ae9cdf922b
2021-03-29 10:15:07 -07:00
Eric Jang
c2ccb3578e Fix inport -> import typo in documentation (#53589)
Summary:
Fixes a small documentation typo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53589

Reviewed By: ngimel

Differential Revision: D26907045

Pulled By: Chillee

fbshipit-source-id: 15c35bec8d75dd897fe8886d0e0e1b889df65b24
2021-03-08 23:56:42 -08:00
Sam Estep
8c798e0622 Forbid trailing whitespace (#53406)
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857

These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
  - `GLOSSARY.md`
  - `aten/src/ATen/core/op_registration/README.md`
  - `scripts/README.md`
  - `torch/csrc/jit/codegen/fuser/README.md`

The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```

I looked over the auto-generated changes and didn't see anything that looked problematic.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406

Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377

This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348

Reviewed By: walterddr, seemethere

Differential Revision: D26856620

Pulled By: samestep

fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
2021-03-05 17:22:55 -08:00
peter
8870c391e9 Update mkl to 2020.2.254 (#52964)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/52907

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52964

Reviewed By: H-Huang

Differential Revision: D26726464

Pulled By: seemethere

fbshipit-source-id: 8f3067292e6416e299b4b040c8fb73510134f02e
2021-03-01 11:13:57 -08:00
Joel Schlosser
a0137808a7 Note on Modules for 1.8 docs (#51536)
Summary:
A new note on Modules for 1.8 documentation.

Rendered form can be seen here: https://alband.github.io/doc_view/notes/modules.html
(thanks Alban!)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51536

Reviewed By: albanD

Differential Revision: D26254282

Pulled By: jbschlosser

fbshipit-source-id: 09cbd46aa268a29b6f54fd48ffe1d6b98db0ff31
2021-02-04 11:28:11 -08:00
anjali411
34d4d79966 Autograd doc note fix (#51661)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51661

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D26230912

Pulled By: anjali411

fbshipit-source-id: 94323d7bce631a4c5781020e9650495461119ede
2021-02-03 15:08:35 -08:00
Mike Ruberry
40c0fffb4b Fixes docs (#51439)
Summary:
pytorch_python_doc_build is failing with:

```
Jan 31 04:30:45 /var/lib/jenkins/workspace/docs/source/notes/broadcasting.rst:6: WARNING: 'any' reference target not found: numpy.doc.broadcasting
```

this removes the incorrect reference and adds an updated link.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51439

Reviewed By: ngimel

Differential Revision: D26170232

Pulled By: mruberry

fbshipit-source-id: 829999db52e1e860d36d626d0d9f26e31283d14b
2021-01-31 22:00:26 -08:00
anjali411
fd9a85d21b Doc update for complex numbers (#51129)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51129

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26094947

Pulled By: anjali411

fbshipit-source-id: 4e1cdf8915a8c6a86ac3462685cdce881e1bcffa
2021-01-27 07:32:26 -08:00
Hameer Abbasi
f7b339d11c Clarify wording around overrides subclasses. (#51031)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47117

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51031

Reviewed By: bdhirsh

Differential Revision: D26047498

Pulled By: albanD

fbshipit-source-id: dd0a7d9f97c0f6469b3050d2e3b4473f1bee3820
2021-01-25 08:19:13 -08:00
Kurt Mohler
8ab1a1495d Rename set_deterministic to use_deterministic_algorithms (#49904)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/49100

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49904

Reviewed By: ezyang, mrshenli

Differential Revision: D25956761

Pulled By: mruberry

fbshipit-source-id: 86a59289d50825a0ebbd7c358b483c8d8039ffa6
2021-01-22 11:27:07 -08:00
Jeffrey Wan
1833009202 Fix typo in complex autograd docs (#49755)
Summary:
Update complex autograd docs to fix a typo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49755

Reviewed By: mruberry

Differential Revision: D25692649

Pulled By: soulitzer

fbshipit-source-id: 43c2113b4c8f2d1828880102189a5a9b887dc784
2020-12-23 14:42:34 -08:00
pbialecki
1451d84766 Minor doc fix: change truncating to rounding in TF32 docs (#49625)
Summary:
Minor doc fix in clarifying that the input data is rounded not truncated.

CC zasdfgbnm ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49625

Reviewed By: mruberry

Differential Revision: D25668244

Pulled By: ngimel

fbshipit-source-id: ac97e41e0ca296276544f9e9f85b2cf1790d9985
2020-12-22 13:46:33 -08:00
Peter Bell
5180caeeb4 Remove deprecated spectral ops from torch namespace (#48594)
Summary:
Ref https://github.com/pytorch/pytorch/issues/42175

This removes the 4 deprecated spectral functions: `torch.{fft,rfft,ifft,irfft}`. `torch.fft` is also now imported by by default.

The actual `at::native` functions are still used in `torch.stft` so can't be full removed yet. But will once https://github.com/pytorch/pytorch/issues/47601 has been merged.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48594

Reviewed By: heitorschueroff

Differential Revision: D25298929

Pulled By: mruberry

fbshipit-source-id: e36737fe8192fcd16f7e6310f8b49de478e63bf0
2020-12-05 04:12:32 -08:00
peter
3c5db30eaa Update magma to 2.5.4 for Windows (#48656)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/48527

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48656

Reviewed By: zhangguanheng66

Differential Revision: D25261601

Pulled By: malfet

fbshipit-source-id: 4ba0036ca882bccd1990108d13596455d179d06e
2020-12-02 09:45:21 -08:00
Hameer Abbasi
4e15877d5c Add documentation for torch.overrides submodule. (#48170)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/48087

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48170

Reviewed By: ejguan

Differential Revision: D25220942

Pulled By: ezyang

fbshipit-source-id: a2b7f7b565f5e77173d8ce2fe9676a8131f929b6
2020-11-30 11:25:31 -08:00
Hameer Abbasi
3a2aad9314 Fix documentation to point to torch.overrides instead of _overrides. (#47842)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47842

Reviewed By: smessmer

Differential Revision: D24951750

Pulled By: ezyang

fbshipit-source-id: df62ec2e52f1c561c864a50bac4abf4a55e4f8e6
2020-11-16 08:28:53 -08:00
Masaki Kozuki
2eb1e866e8 Update links in DDP note (#47663)
Summary:
Update the links in https://pytorch.org/docs/stable/notes/ddp.html#.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47663

Reviewed By: smessmer

Differential Revision: D24951684

Pulled By: ezyang

fbshipit-source-id: c1c104d76cf0292a7fc75a627bf76bb56fea72d0
2020-11-13 21:26:28 -08:00
Xiang Gao
4a7de2746f Add docs on how to toggle TF32 flags on C++ (#47331)
Summary:
I have been asked several times how to toggle this flag on libtorch. I think it would be good to mention it in the docs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47331

Reviewed By: glaringlee

Differential Revision: D24777576

Pulled By: mruberry

fbshipit-source-id: cc2a338c477bb57e0bb74b8960c47fde99665e41
2020-11-08 01:29:24 -08:00
anjali411
ac245f6b45 Complex autograd doc fix (#46258)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46258

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D24286512

Pulled By: anjali411

fbshipit-source-id: 60bc98d69336101c0d8fe5ab542b9757b5e7faac
2020-10-13 14:36:50 -07:00
Vitaly Fedyunin
31ee5d8d8b Adding information how to control randomness with DataLoader (#45749)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45749

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D24088407

Pulled By: VitalyFedyunin

fbshipit-source-id: 398b73ec5e8c83000ebc692001da847fc0aaa48f
2020-10-12 16:57:58 -07:00
anjali411
89256611b5 Doc note update for complex autograd (#45270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45270

<img width="1679" alt="Screen Shot 2020-10-07 at 1 45 59 PM" src="https://user-images.githubusercontent.com/20081078/95368324-fa7b2d00-08a3-11eb-9066-2e659a4085a2.png">
<img width="1673" alt="Screen Shot 2020-10-07 at 1 46 10 PM" src="https://user-images.githubusercontent.com/20081078/95368332-fbac5a00-08a3-11eb-9be5-77ce6deb8967.png">
<img width="1667" alt="Screen Shot 2020-10-07 at 1 46 30 PM" src="https://user-images.githubusercontent.com/20081078/95368337-fe0eb400-08a3-11eb-80a2-5ad23feeeb83.png">
<img width="1679" alt="Screen Shot 2020-10-07 at 1 46 48 PM" src="https://user-images.githubusercontent.com/20081078/95368345-00710e00-08a4-11eb-96d9-e2d544554a4b.png">
<img width="1680" alt="Screen Shot 2020-10-07 at 1 47 03 PM" src="https://user-images.githubusercontent.com/20081078/95368350-023ad180-08a4-11eb-89b3-f079480741f4.png">
<img width="1680" alt="Screen Shot 2020-10-07 at 1 47 12 PM" src="https://user-images.githubusercontent.com/20081078/95368364-0535c200-08a4-11eb-82fc-9435a046e4ca.png">

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D24203257

Pulled By: anjali411

fbshipit-source-id: cd637dade5fb40cecf5d9f4bd03d508d36e26fcd
2020-10-08 15:04:52 -07:00
Michael Carilli
5640b79bf8 Allow consumer ops to sync on GraphRoot's gradient (#45787)
Summary:
Currently, a GraphRoot instance doesn't have an associated stream.  Streaming backward synchronization logic assumes the instance ran on the default stream, and tells consumer ops to sync with the default stream.  If the gradient the GraphRoot instance passes to consumer backward ops was populated on a non-default stream, we have a race condition.

The race condition can exist even if the user doesn't give a manually populated gradient:
```python
with torch.cuda.stream(side_stream):
    # loss.backward() implicitly synthesizes a one-element 1.0 tensor on side_stream
    # GraphRoot passes it to consumers, but consumers first sync on default stream, not side_stream.
    loss.backward()

    # Internally to backward(), streaming-backward logic takes over, stuff executes on the same stream it ran on in forward,
    # and the side_stream context is irrelevant.  GraphRoot's interaction with its first consumer(s) is the spot where
    # the side_stream context causes a problem.
```

This PR fixes the race condition by associating a GraphRoot instance, at construction time, with the current stream(s) on the device(s) of the grads it will pass to consumers. (i think this relies on GraphRoot executing in the main thread, before backward thread(s) fork, because the grads were populated on the main thread.)

The test demonstrates the race condition. It fails reliably without the PR's GraphRoot diffs and passes with the GraphRoot diffs.

With the GraphRoot diffs, manually populating an incoming-gradient arg for `backward` (or `torch.autograd.grad`) and the actual call to `autograd.backward` will have the same stream-semantics relationship as any other pair of ops:
```python
# implicit population is safe
with torch.cuda.stream(side_stream):
    loss.backward()

# explicit population in side stream then backward in side stream is safe
with torch.cuda.stream(side_stream):
    kickoff_grad = torch.ones_like(loss)
    loss.backward(gradient=kickoff_grad)

# explicit population in one stream then backward kickoff in another stream
# is NOT safe, even with this PR's diffs, but that unsafety is consistent with
# stream-semantics relationship of any pair of ops
kickoff_grad = torch.ones_like(loss)
with torch.cuda.stream(side_stream):
    loss.backward(gradient=kickoff_grad)

# Safe, as you'd expect for any pair of ops
kickoff_grad = torch.ones_like(loss)
side_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(side_stream):
    loss.backward(gradient=kickoff_grad)
```
This PR also adds the last three examples above to cuda docs and references them from autograd docstrings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45787

Reviewed By: nairbv

Differential Revision: D24138376

Pulled By: albanD

fbshipit-source-id: bc4cd9390f9f0358633db530b1b09f9c1080d2a3
2020-10-07 08:53:53 -07:00
Bert Maher
03342af3a3 Add env variable to bypass CUDACachingAllocator for debugging (#45294)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45294

While tracking down a recent memory corruption bug we found that
cuda-memcheck wasn't finding the bad accesses, and ngimel pointed out that
it's because we use a caching allocator so a lot of "out of bounds" accesses
land in a valid slab.

This PR adds a runtime knob (`PYTORCH_NO_CUDA_MEMORY_CACHING`) that, when set,
bypasses the caching allocator's caching logic so that allocations go straight
to cudaMalloc.  This way, cuda-memcheck will actually work.

Test Plan:
Insert some memory errors and run a test under cuda-memcheck;
observe that cuda-memcheck flags an error where expected.

Specifically I removed the output-masking logic here:
https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/tensorexpr/cuda_codegen.cpp#L819-L826

And ran:
```
PYTORCH_NO_CUDA_MEMORY_CACHING=1 cuda-memcheck pytest -k test_superslomo test_jit_fuser_te.py
```

Reviewed By: ngimel

Differential Revision: D23964734

Pulled By: bertmaher

fbshipit-source-id: 04efd11e8aff037b9edde80c70585cb820ee6e39
2020-09-28 11:40:04 -07:00
Michael Carilli
3e6bb5233f Reference amp tutorial (recipe) from core amp docs (#44725)
Summary:
https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html is live.  Core amp docs should reference it.

Also i fixed some typos in the `zero_grad` docs we ignored when git was behaving weirdly during ngimel 's merge of https://github.com/pytorch/pytorch/pull/44423.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44725

Reviewed By: mruberry

Differential Revision: D23723807

Pulled By: ngimel

fbshipit-source-id: ca0b76365f8ca908bd978e3b38bf81857fa6c2a3
2020-09-16 11:37:58 -07:00