Fixes https://github.com/pytorch/pytorch/issues/114389
Previously, dynamo would attempt to trace through the `__init__` of traceable tensor subclasses, since their constructors are AOT dispatcher traceable by definition, dynamo should automatically put these in the graph like we do for any other tensors. Not doing this is difficult because dynamo would need to apply mutations post tensor subclass creation in the graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135151
Approved by: https://github.com/bdhirsh
Part of #134054.
This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
`return_and_correct_aliasing` is used by FunctionalTensor today to ensure that when we call view/inplace ops, the input and output `FunctionalTensors` share the same storage.
This was previously done with a dispatcher call to `aten.set_`. In this PR I swap it out with a util that just manually does the storage swap. Benefits:
(1) we know this is safe in the specific way it is used by FunctionalTensor: avoiding the extra assertions in `aten.set_` is necessary to avoid some unbacked symint errors
(2) this should improve compile times a bit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132524
Approved by: https://github.com/ezyang
ghstack dependencies: #132243, #132337, #132322
This adds a new dispatch mode, PreDispatchSchemaCheckMode, built on top of SchemaCheckMode, used for verifying op schemas for functionalization for PreDispatch IR. More specifically, the mode runs in eager mode on concrete inputs, checking if op schemas incorrectly claim to be functional, but are aliasing or mutating. This mode is pushed to the pre-dispatch mode stack, and run before decompositions.
Current testing is hooked up to OpInfo, containing 1103 tests on 600 unique ops. Below is a list of ops that fail testing. One caveat is we only raise errors on ops that claim to be functional - if an op schema admits aliasing or mutating but fails testing for the other, it still may decompose further and become functional.
List of failed ops:
```
aten.atleast_1d.default
aten.atleast_2d.default
aten.atleast_3d.default
aten.cartesian_prod.default
aten.conj_physical.default
aten.alpha_dropout.default
aten.feature_dropout.default
aten.feature_alpha_dropout.default
aten.unsafe_chunk.default
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125481
Approved by: https://github.com/tugsbayasgalan
This PR switches export IR from aot-dispatch to pre-dispatch IR.
**What is pre-dispatch IR and why should you care?**
Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.
In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:
You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
You can write sound graph transformations more easily as the IR is functional.
Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.
If you want to get the core aten IR out of torch.export, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```
Differential Revision: [D57172986](https://our.internmc.facebook.com/intern/diff/D57172986)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125860
Approved by: https://github.com/zhxchen17
fake_tensor.py had mypy error ignored. That seems less than desirable.
Also added SafePyObjectT<T> which is a tagged wrapper around a SafePyObject but provides static type checking (with no other guarantees).
Used `SafePyObjectT<TorchDispatchModeKey>` on some of the TorchDispatchModeTLS API to ensure that we don't accidentally inject a different type than expected into the stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124428
Approved by: https://github.com/malfet
fake_tensor.py had mypy error ignored. That seems less than desirable.
Also added SafePyObjectT<T> which is a tagged wrapper around a SafePyObject but provides static type checking (with no other guarantees).
Used `SafePyObjectT<TorchDispatchModeKey>` on some of the TorchDispatchModeTLS API to ensure that we don't accidentally inject a different type than expected into the stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124428
Approved by: https://github.com/malfet
This PR switches export IR from aot-dispatch to pre-dispatch IR.
**What is pre-dispatch IR and why should you care?**
Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.
In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:
- You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
- You can write sound graph transformations more easily as the IR is functional.
- Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.
If you want to get the core aten IR out of `torch.export`, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```
Differential Revision: [D56273267](https://our.internmc.facebook.com/intern/diff/D56273267)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123573
Approved by: https://github.com/gmagogsfm
Summary: We provide a `is_in_torch_dispatch_mode` API returning `bool` to determine whether the program is running in torch dispatch mode or not.
Test Plan:
- OSS CI
- Tested with publish of hstu models with the this diff and following diffs D54964288, D54964702, D54969677, D55025489, runtime errors are not raised anymore in publish
Differential Revision: D55091453
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122339
Approved by: https://github.com/jiayisuse
Things that were bad before this PR:
1. Temporarily unsetting functional tensor mode and proxy mode both had duplicate implementation
2. There are variants of mode handling private utils that has duplicate implementation. (different APIs calling repeated implementation, so i refactored)
3. _push_mode API used to take dispatch key argument which is not necessary.
4. There are unused APIs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121083
Approved by: https://github.com/zou3519
Fixes#117794
Fix tripped the assert here: 86dedebeaf/torch/utils/_python_dispatch.py (L216)
From investigation: I found that functionalization of an in-place op (`mul_` in this test case) results in the strides of `TwoTensor`'s `a` / `b` components being mutated to be contiguous. This is not reflected in the outer tensor, causing the assert to be tripped.
After discussion with Brian, I address this in this PR by disallowing input mutations on non-contiguous tensor subclass inputs for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117860
Approved by: https://github.com/bdhirsh
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
In this PR, we are implementing Functionalization on pre-dispatch graph. Today, every dispatch key except for Dispatchkey.Python has a dedicated mode stack in python. PreDispatch tracing relies on this behaviour by pushing ProxyTorchDispatchMode to Dispatchkey.PreDispatch mode stack and handle the dispatching logic in python. To make pre-dispatch functionalization work, we now need to push FunctionalTensorMode on DispatchKey.PreDispatch mode stack and make sure it runs before ProxyTorchDispatchMode. (this is very similar to how post-dispatch tracing work). Here are some design decisions we made for this flow to work:
1. FunctionalTensorMode internally calls C++ functionalize key. Since C++ functionalization goes after PreDispatch, if we are not careful, we will keep re-entering into PreDispatch key. We solve this by directly dispatching to C++ Functionalize key.
2. We delete mode_stack_per_key logic because the only realistic time it is exercised is for PreDispatch and it is in general not safe to have a plain list because FunctionalTensorMode and ProxyTorchDispatchMode ordering matter and it is hard to enforce it on plain list. Instead, now we have a private class that tracks PreDispatch mode stack.
3. We will still run CompositeImplicitAutograd decomps in this PR, and disable this logic later as a followup.
Some missing bits after this PR:
1. Preserving autograd ops in a functional form. Right now they still show up in the graph but in a "non-functional" way.
2. Turn off CompositeImplicitAutograd decomps
3. Functionalizing HOO
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113728
Approved by: https://github.com/bdhirsh
Continuation of #112185, following the design in this [doc](https://docs.google.com/document/d/1ipSxcTzEMMOAPvxP-YJlD5JBZZmIGgh8Q34ixtOUCRo).
Summary:
* Introduce `SubclassSymbolicPolicy` containing separate dynamic dim / constraint policies for the outer and inner tensors
* Expand the automatic dynamic algorithm to recurse into inner tensors and produce one of these for a subclass instance
* Maintain legacy behavior for subclasses by recursively calling `mark_dynamic()` on inner tensors *of the same dim as outer* when `mark_dynamic(outer, ...)` is called
* Addresses this: 6a86cf00ad/torch/_dynamo/variables/builder.py (L1750)
* Add `outer_size` and `outer_stride` arguments to `__tensor_unflatten__()` so that you can find out what symbols were allocated for the outer size / stride (you are expected to return a tensor that compares equal to the outer symbols)
* Signatures now:
```python
# attrs is a list of inner tensor attributes on x; inner_tensor = getattr(x, attr)
# ctx is anything useful for rebuilding the class we want to guard on
attrs, ctx = x.__tensor_flatten__()
...
# inner_tensors is a dict of {attr -> tensor}
# ctx is taken unmodified from flattening and (eventually) guarded on
# outer_size is the expected size of the output; possibly symbolic
# outer_stride is the expected strides of the output; possibly symbolic
y = MySubclass.__tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride)
# at the __tensor_unflatten__() call-site in PT2, we assert y.shape == outer_size and y.stride() == outer_stride
# the assert simplifies symbols when there are relationships between outer and inner symbols
```
* Size info needed for `NestedTensor` at least, stride info needed for `DTensor` at least
* Punting on `outer_storage_offset` because storage_offset handling is horribly broken in PT2 right now
* ~~Add new `__tensor_mark_dynamic__()` to allow overriding the behavior of mark_dynamic on a per-subclass basis~~ (booted to future work)
* ~~Add guards for tensor subclasses by calling `__tensor_flatten__()` in the guard to test equality on `ctx`~~
* Now handled in #114469
* Next PR: add TENSOR_MATCH guards on inner tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114311
Approved by: https://github.com/ezyang, https://github.com/drisspg, https://github.com/voznesenskym, https://github.com/bdhirsh
I missed a few tests the first time around - this fixes out= op handling for `_return_and_correct_aliasing`, which failed a few tests in the python functionalization <> AOTAutograd PR above.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109662
Approved by: https://github.com/ezyang
ghstack dependencies: #108654