With the current state of export's dynamic shapes, we struggle with guards and constraints that are beyond the current dynamic shapes language, expressed with dims and derived dims. While we can compile and guarantee correctness for guards within the current language (e.g. min/max ranges, linear relationships, integer divisibility) we struggle to dynamically compile guards which extend beyond that.
For these "complex" guards, we typically do either of the following: 1) raise a constraint violation error, along the lines of "not all values of <symbol> in the specified range satisfy <guard>", with or without suggested fixes, 2) specialize to the provided static values and suggest removing dynamism, or 3) fail compilation due to some arbitrary unsupported case. Previous [work](https://github.com/pytorch/pytorch/pull/124949) went towards resolving this by disabling forced specializations, instead allowing the user to fail at runtime with incorrect inputs.
In this PR, relying on [hybrid backed-unbacked symints](https://github.com/pytorch/pytorch/issues/121749), [deferred runtime asserts](https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/runtime_assert.py), and the function [_is_supported_equivalence()](d7de4c9d80/torch/fx/experimental/symbolic_shapes.py (L1824)), we add a flag `_allow_complex_guards_as_runtime_asserts` which allows the user to compile exported programs containing these guards and maintain dynamism, while adding correctness checks as runtime assertions in the graph.
Hybrid backed-unbacked symints allow us to easily bypass "implicit" guards emitted from computation - guards that we ~expect to be true. Popular examples revolve around reshapes:
```
# reshape
def forward(self, x, y): # x: [s0, s1], y: [s2]
return x.reshape([-1]) + y # guard s0 * s1 = s2
This leads to the following exported program
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[s0, s1]", y: "f32[s2]"):
sym_size_int: "Sym(s2)" = torch.ops.aten.sym_size.int(y, 0)
mul: "Sym(-s2)" = -1 * sym_size_int; sym_size_int = None
sym_size_int_1: "Sym(s0)" = torch.ops.aten.sym_size.int(x, 0)
sym_size_int_2: "Sym(s1)" = torch.ops.aten.sym_size.int(x, 1)
mul_1: "Sym(s0*s1)" = sym_size_int_1 * sym_size_int_2; sym_size_int_1 = sym_size_int_2 = None
add: "Sym(s0*s1 - s2)" = mul + mul_1; mul = mul_1 = None
eq: "Sym(Eq(s0*s1 - s2, 0))" = add == 0; add = None
_assert_scalar = torch.ops.aten._assert_scalar.default(eq, "Runtime assertion failed for expression Eq(s0*s1 - s2, 0) on node 'eq'"); eq = None
view: "f32[s0*s1]" = torch.ops.aten.view.default(x, [-1]); x = None
add_1: "f32[s0*s1]" = torch.ops.aten.add.Tensor(view, y); view = y = None
return (add_1,)
```
Another case is symbol divisibility:
```
def forward(self, x): # x: [s0, s1]
return x.reshape([-1, x.shape[0] - 1]) # Eq(Mod(s0 * s1, s0 - 1), 0)
```
Applying deferred runtime asserts also helps dynamic compilation for "explicit" complex guards that typically cause problems for export. For example we can generate runtime asserts for not-equal guards, and complex conditions like the following:
```
class Foo(torch.nn.Module):
def forward(self, x, y):
# check that negation of first guard also shows up as runtime assertion
if x.shape[0] == y.shape[0]: # False
return x + y
elif x.shape[0] == y.shape[0] ** 3: # False
return x + 2, y + 3
elif x.shape[0] ** 2 == y.shape[0] * 3: # True
return x * 2.0, y * 3.0
```
For the above graph we will generate 3 runtime assertions: the negation of the first 2, and the 3rd condition as a guard.
One additional benefit here over the current state of exported programs is that this adds further correctness guarantees - previously with explicit complex guards, if compilation succeeded, the guards would be ignored at runtime, treated as given.
As shown above, the runtime asserts appear as math ops in the graph, generated by the sympy interpreter, resulting in an _assert_scalar call. There is an option to avoid adding these asserts into the graph, by setting `TORCH_DYNAMO_DO_NOT_EMIT_RUNTIME_ASSERTS=1`. This results in the "original" computation graph, with dynamism, and any incorrect inputs will fail on ops during runtime. Further work could go into prettifying the printer, so the majority of the graph isn't guard-related.
Ideally this PR would subsume and remove the recently added [_disable_forced_specializations](https://github.com/pytorch/pytorch/pull/124949) flag, but that flag still handles one additional case of specialization: single-variable equalities where the symbol is solvable for a concrete value: see this [PR](https://github.com/pytorch/pytorch/pull/126925)
This PR doesn't change any behavior around data-dependent errors/unbacked symints yet, that could be further work.
NOTE: will take naming change suggestions for the flag :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127129
Approved by: https://github.com/avikchaudhuri
tlparse prints failure description like this
> dynamic shape operator: aten._unique2.default; to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True
adding os env var to set it easier for testing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127017
Approved by: https://github.com/jackiexu1992
The big idea is that floats are treated as Tensors on input/output to the FX graph, but on the inside, we immediately call item() on the synthetic Tensor and record regular float operations on it. Canonicalization to Tensor operations will happen in a standalone FX pass. This behavior is controlled by `specialize_float` config variable when set to False.
The generated graph looks like this for the test `test_unspec_float_output`:
```
def forward(self, L_x_: "f32[3]", L_y_: "f32[]"):
l_x_ = L_x_
l_y_ = L_y_
# File: /data/users/ezyang/a/pytorch/test/dynamo/test_unspec.py:511 in f, code: return x + 1, y * 2
add: "f32[3]" = l_x_ + 1; l_x_ = None
item: "Sym(zf0)" = l_y_.item(); l_y_ = None
mul: "Sym(2*zf0)" = item * 2; item = None
scalar_tensor: "f32[]" = torch.scalar_tensor(mul); mul = None
return (add, scalar_tensor)
```
The ingredients:
* **torch/_dynamo/variables/builder.py** When `specialize_float` is False, we wrap float literals with `wrap_symfloat`. This is an unholy mashup of `wrap_symint` and `wrap_unspecialized_primitive`. The overall strategy is that we first generate a tensor argument (because that's what we want to show up into the FX graph), but then immediately call item() on the tensor argument to get a SymNodeVariable, which we will do the rest of the tracing with. Importantly, this SymNodeVariable is backed with the source of the original float: this means we can guard on the resulting value (something we could NOT do with UnspecializedPythonVariable). This has to be done manually, because if you literally call item() on the tensor, you will end up with an unbacked float. There is a bit of copy paste from wrap_symint and wrap_unspecialized_primitive which we can try to factor out, but this really is its own thing and you should review every line of code in the function.
* **torch/fx/experimental/symbolic_shapes.py** We now can generate guards on float inputs, and these guards are handled inside of ShapeEnv. So we need to be able to allocate (backed!) float symbols, and produce guards for them. Fairly straightforward generalization.
* **torch/_dynamo/codegen.py** I also need to maintain the invariant that there are no float outputs to the FX graph. I chose to do this at codegen time. When we detect a SymNodeVariable on the return stack for a float, we on the fly convert it (via `as_tensor`) to a TensorVariable, which is the true output. We then special case the output bytecode to call item() on it again. The tensor conversion is memoized on SymNodeVariable since we typically run the code generation process twice.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125325
Approved by: https://github.com/lezcano, https://github.com/jansel
Turning on guard_nn_modules adds large number of guards, so we are bound to take a perf hit. But the perf hit is small. These are the numbers

First we observe that compared to Python guards, C++ guards give around 6x speedup. This reduces the total time spent in guards. This is shown in the last column (cpp_guards/inductor_optimized_latency). The worst model is around 1.61%, with most of the models below 1%. I think this is good enough signal to turn the config on.
One might also wonder how much guard slowdown occurs with `guard_nn_modules=True`. This is the table

For most models, the guard overhead with nn module guards is under 2x. There are a few outliers, where the slowdown is really high and for those models we spend 1%-2% time in C++ guards as shown in first table.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125202
Approved by: https://github.com/ezyang
Summary: [#123231](https://github.com/pytorch/pytorch/pull/123231) adds cudagraph supports for more types of functions (i.e., cudagraph managed input mutation). These newly supported functions may have mutated static inputs, leading to assertion errors in some workload which skip cudagraph previously. This diff adds a config to opt in the new feature.
Test Plan: ci
Differential Revision: D56481353
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124754
Approved by: https://github.com/eellison
When minifying, the after-aot minifier ignores non-floating values by
default but does check them when running the the initial graph dump step.
This means we may capture a graph that doesn't fail the tester and doesn't have
any meaningful divergence.
For example, the derivative of `elu(x)` depends on `x > 0` so this value is
saved for backwards and so becomes a graph output. However, the difference
between `FLT_MIN` and `0` in `x` is now enough to trigger an accuracy failure.
I fix this by adding a config variable and environment variable to ignore these
non floating point values.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123006
Approved by: https://github.com/ezyang
ghstack dependencies: #123005
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
Tacotron2 causes massive loop unrolling resulting in very large graphs (26k nodes) which was causing inductor (and tracing itself) to choke.
The unrolling size is controlled by the environment variable TORCHDYNAMO_MAX_LOOP_UNROLL_NODES which defaults to the arbitrary value 5000.
This updates the tacotron2 timings as follows:
eager timing: 3m:23s -> 35s
aot_eager timing: 4m:12s -> 39s
inductor timing: 22m:24s ->1m
For reference the big loop in tacotron2 was this one (model.py[405]):
```
while len(mel_outputs) < decoder_inputs.size(0) - 1:
decoder_input = decoder_inputs[len(mel_outputs)]
mel_output, gate_output, attention_weights = self.decode(decoder_input)
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output.squeeze(1)]
alignments += [attention_weights]
```
which gets unrolled and inlined adding about 36 nodes to the graph per iteration.
Fixes#98467
Relates to #102839 which hopefully will result in a better fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120023
Approved by: https://github.com/yanboliang
**Summary**
The reducer of `DistributedDataParallel` is implemented with C++ and it is not easy to trace the allreduce launched in the reducer. This PR modifies `DistributedDataParallel` to launch one allreduce per gradient when `compiled_autograd` is enabled. The changes allow us to use `compiled_autograd` to trace the allreduce and later be optimized (fused) in the Inductor.
**Key Logic**
1. If `ddp_python_hook` is True, we assume `compiled_autograd` is used. `DistributedDataParallel` registers `compiled_accum_grad_hook` for all parameters.
2. In the first forward() call, if `DistributedDataParallel` is not compiled, all `compiled_accum_grad_hook` are deregistered. If `DistributedDataParallel` is compiled, all `compiled_accum_grad_hook` will be compiled by `compiled_autograd`.
3. `compiled_accum_grad_hook` launches an allreduce to reduce the gradient of the parameter.
**Bucketing**
The compiled backward is slow because there is no bucketing for the allreduces. We rely on Inductor to bucket the allreduces.
The bucketing is done in a separate PR.
Differential Revision: [D49428482](https://our.internmc.facebook.com/intern/diff/D49428482/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110662
Approved by: https://github.com/wconstab
I feel it's easier to open a new PR rather than iterating on the previous PR (https://github.com/pytorch/pytorch/pull/105257 ) since this is more like a rewrite.
In this PR, instead of changing GraphModule directly which can easily causes BC issue, I create a LazyGraphModule class as Zachary & Jason suggested in comments from the previous PR.
The difference between LazyGraphModule and GraphModule is mainly about how re-compile for the graph module happens. In GraphModule the recompilation happens 'eagerly': constructing a GraphModule will cause the recompilation. While in LazyGraphModule, we just mark the module as needing recompilation. The real recompilation only happens when absolutely required (e.g. call forward method, access the code property etc.). In a lot of cases in torch.compile, the real recompilation eventually is not triggered at all. This can save a few seconds of compilation time.
By default, GraphModule rather than LazyGraphModule is used. `use_lazy_graph_module(True)` context manager can be used to pick LazyGraphModule instead. This has been applied to the torch.compile stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117911
Approved by: https://github.com/jansel