Commit Graph

633 Commits

Author SHA1 Message Date
Ivan Yashchuk
59d794b2c3 Port CPU torch.ormqr to ATen (#57315)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57315

This PR ports `torch.ormqr` from TH to ATen.
CUDA path will be implemented in a follow-up PR.
With ATen port, support for complex and batched inputs is added.
The tests are rewritten and OpInfo entry is added.

We can implement the least squares solver with geqrf + ormqr +
triangular_solve. So it's useful to have this function renewed at least for the
internal code.

Resolves https://github.com/pytorch/pytorch/issues/24748

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D28242070

Pulled By: mruberry

fbshipit-source-id: f070bb6ac2f5a3269b163b22f7354e9089ed3061
2021-05-06 04:44:40 -07:00
Jeff Yang
03b5d87980 fix(docs): torch.add and torch.mul (#54672)
Summary:
fixes https://github.com/pytorch/pytorch/issues/39425
https://11813267-65600975-gh.circle-artifacts.com/0/docs/generated/torch.add.html
https://11813267-65600975-gh.circle-artifacts.com/0/docs/generated/torch.mul.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54672

Reviewed By: ailzhang

Differential Revision: D27328523

Pulled By: zou3519

fbshipit-source-id: c804e3312b63ee209fef8bdfd8a92d46a345aa21
2021-05-04 08:38:06 -07:00
Peter Bell
33eea146ee torch.clamp with tensor min and max (#52695)
Summary:
Fixes gh-2793

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52695

Reviewed By: mruberry

Differential Revision: D27395977

Pulled By: ezyang

fbshipit-source-id: f86aa240feb034d42e4c45447e72218f6a773c24
2021-05-03 12:56:16 -07:00
kshitij12345
d4ddb47719 [special] Add xlog1py (#55138)
Summary:
Reference : https://github.com/pytorch/pytorch/issues/50345

* [x] Check Rendered Document (https://12494173-65600975-gh.circle-artifacts.com/0/docs/special.html#torch.special.xlog1py)
* [x] Tests in Binary Ufunc
* [x] OpInfo
* [x] Structured Kernel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55138

Reviewed By: ngimel

Differential Revision: D27961461

Pulled By: mruberry

fbshipit-source-id: 30a8f41970a829bf50254aadf5615e8ce4148c7e
2021-04-30 05:51:13 -07:00
Akifumi Imanishi
9da0f2e95e Support __pos__ and positive (#55891)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55604.

This PR implements `torch.Tensor.__pos__` and `torch.positive` for the compatibility with NumPy’s interface. (cc: mruberry, rgommers, emcastillo and kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55891

Reviewed By: H-Huang

Differential Revision: D28025928

Pulled By: mruberry

fbshipit-source-id: e43e329a802f31bf8805f6efab5c2c7ef34c88b9
2021-04-27 13:23:59 -07:00
iramazanli
3e006fc57e Adding hsplit,vsplit and dsplit methods (#53536)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53536

Reviewed By: albanD

Differential Revision: D27938880

Pulled By: iramazanli

fbshipit-source-id: f741119517783ec2bafa296622ee518b587dd127
2021-04-26 09:39:09 -07:00
kshitij12345
298db67220 [OpInfo] Add Function Variant and Opinfo for permute (#56125)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56125

Reviewed By: ezyang

Differential Revision: D27960312

Pulled By: mruberry

fbshipit-source-id: b9dd89f7e69d7dff29f3b53828656c13df898fa5
2021-04-25 21:26:44 -07:00
Ivan Yashchuk
58fcf77712 Port CPU torch.geqrf to ATen (#56249)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56249

This PR ports `torch.geqrf` from TH to ATen. CUDA path will be
implemented in a follow-up PR.
With ATen port support for complex and batched inputs is added.
There were no correctness tests, they are
added in this PR and I added OpInfo for this operation.

We can implement the QR decomposition as a composition of geqrf and
orgqr (torch.linalg.householder_product).
Also we can implement the least squares solver with geqrf + ormqr +
trtrs. So it's useful to have this function renewed at least for the
internal code.

Resolves https://github.com/pytorch/pytorch/issues/24705

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D27907357

Pulled By: mruberry

fbshipit-source-id: 94e1806078977417e7903db76eab9d578305f585
2021-04-25 01:17:00 -07:00
xamm
6e5ce569bd DOC: add note for torch.clamp() special case min > max See #45664 (#56367)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45664

This PR adds a note to the documentation for `torch.clamp()` to alert users to a special case: If `min` is greater than `max`, all values are set to the `max` value.

Also, an example was added after the first code example. And this one is referenced in the note.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56367

Reviewed By: ezyang

Differential Revision: D27960553

Pulled By: mruberry

fbshipit-source-id: 9dc6016ccacebe87c809a0dd9f557b4aea0ae6f5
2021-04-24 17:09:22 -07:00
Sam Estep
34d0bd5b1d Fix TestTypeHints.test_doc_examples (#56388)
Summary:
https://github.com/pytorch/pytorch/issues/54268 removed `test_run_mypy` since now we're running `mypy` as its own job in GitHub Actions, but previously we used this `set_cwd` context manager in that test to ensure that we picked up the `mypy` config correctly. However, for some reason, we have not been doing that in `test_doc_examples`, which has been succeeding in CI for a while despite being broken.

Specifically, [`run_test.py` changes the working directory to `test/` before running test files](48aaea3359/test/run_test.py (L534-L535)), which is contrary to [what `CONTRIBUTING.md` instructs developers to do](48aaea3359/CONTRIBUTING.md (python-unit-testing)). As a result, in CI, `test/test_type_hints.py` has been passing in CI, but if you run it locally from the root of the repo, this you get this error:
```
F
======================================================================
FAIL: test_doc_examples (__main__.TestTypeHints)
Run documentation examples through mypy.
----------------------------------------------------------------------
Traceback (most recent call last):
  File "test/test_type_hints.py", line 127, in test_doc_examples
    self.fail(f"mypy failed:\n{stdout}")
AssertionError: mypy failed:
test/generated_type_hints_smoketest.py:851: error: Name 'tensor' is not defined  [name-defined]
test/generated_type_hints_smoketest.py:853: error: Name 'tensor' is not defined  [name-defined]
Found 2 errors in 1 file (checked 1 source file)

----------------------------------------------------------------------
Ran 1 test in 1.416s

FAILED (failures=1)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56388

Test Plan:
Before this PR, the first of the following two commands should fail (since that is essentially what is run in CI), but the second should fail:
```
python test/run_test.py -i test_type_hints
python test/test_type_hints.py
```
After this PR, both commands should succeed.

Reviewed By: driazati

Differential Revision: D27860173

Pulled By: samestep

fbshipit-source-id: efb82fffd7ccb04d0331824b40bdef7bbc319c98
2021-04-19 15:27:09 -07:00
Nico
8d7faa2af8 Update _torch_docs.py to close #56240. (#56242)
Summary:
Update _torch_docs.py to close https://github.com/pytorch/pytorch/issues/56240.
Added the "generator" argument to the docs of torch.rand and torch.randn.

Fixes https://github.com/pytorch/pytorch/issues/56240

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56242

Reviewed By: ejguan

Differential Revision: D27821513

Pulled By: agolynski

fbshipit-source-id: e42c431eddc7a83bd1c1ea368a2effbe3f10e92e
2021-04-16 12:09:49 -07:00
ACactUs
80d04f910c fix typo in argmax docstring (#55239)
Summary:
argmax docstring previously said that it returns indexes of the first 'minimal' value, fixed typo in that line to 'maximal'

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55239

Reviewed By: albanD

Differential Revision: D27641562

Pulled By: mrshenli

fbshipit-source-id: f8b5c579400088b5210c83a05da6c4c106fbf95d
2021-04-12 10:39:36 -07:00
Sameer Deshmukh
5fb1142702 Add CSR (compressed sparse row) layout for sparse tensors (#50937)
Summary:
Implement compressed sparse row format. Derived from the GCS implementation at https://github.com/pytorch/pytorch/pull/44190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50937

Reviewed By: mrshenli

Differential Revision: D27439865

Pulled By: ezyang

fbshipit-source-id: 3ba3dcb9679505b980ff6a5f513e913bbae2fb1d
2021-04-12 10:09:12 -07:00
lezcano
211d31afc9 symeig supports complex backward (#55085)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53651
I did not put much effort in improving the docs, as I will go over all these docs in future PRs
cc anjali411

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55085

Reviewed By: nikithamalgifb

Differential Revision: D27493604

Pulled By: anjali411

fbshipit-source-id: 413363013e188bc869c404b2d54ce1f87eef4425
2021-04-12 09:45:50 -07:00
neal
a3c062d4f5 docs: improve torch.matrix_exp() (#55626)
Summary:
Add a signature and make the mathematical expression related to the signature

Fixes https://github.com/pytorch/pytorch/issues/55599

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55626

Reviewed By: ngimel

Differential Revision: D27699518

Pulled By: mruberry

fbshipit-source-id: e61d76e99eb8fc36114c1c2ee90990740d78beea
2021-04-11 16:03:03 -07:00
kshitij12345
902bf0bbbe [special] Alias for sigmoid and logit & follow-up (#54759)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Chages:
* Alias for sigmoid and logit
* Adds out variant for C++ API
* Updates docs to link back to `special` documentation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54759

Reviewed By: mrshenli

Differential Revision: D27615208

Pulled By: mruberry

fbshipit-source-id: 8bba908d1bea246e4aa9dbadb6951339af353556
2021-04-08 00:56:59 -07:00
Nikita Shulga
add49e7e4e Enforce PEP263 for PyTorch python codebase (#55346)
Summary:
All python files containing non-ASCII characters should be correctly annotated with `# -*- coding: utf-8 -*-` comment

Delete number of superfluous UTF-8 characters, most commonly UTF-8 opening closing quotation mark U+2019 (’) instead of ascii apostrophe ', for example `Module’s`->`Module's`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55346

Reviewed By: samestep

Differential Revision: D27582044

Pulled By: malfet

fbshipit-source-id: c1cd89655915858ff3a41f675cdfffff795a8e44
2021-04-06 18:31:38 -07:00
maxwell
79fe5b7897 [Doc]fix torch.ceil formula issue(pytorch#54948) (#55039)
Summary:
Fixes wrong formula https://github.com/pytorch/pytorch/issues/54948
The new one is
<img width="157" alt="截屏2021-03-31 下午5 25 59" src="https://user-images.githubusercontent.com/32546978/113124411-14407000-9248-11eb-92f6-7b47b4cfd5e4.png">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55039

Reviewed By: ngimel

Differential Revision: D27562484

Pulled By: mruberry

fbshipit-source-id: e01d9bfc0cf04558ecff3336a055037e6c3df028
2021-04-06 15:33:23 -07:00
Heitor Schueroff
6e2d020037 Add interpolation kwarg to torch.quantile (#49267)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49267

This PR builds upon the PR https://github.com/pytorch/pytorch/pull/48711 by RockingJavaBean. The original PR introduced a BC breaking change by making the interpolation parameter positional. Thus, previous invocations of torch.quantile that did not include the interpolation parameter failed after the PR landed.

To avoid BC breaking changes, we preserve the original signatures and make the interpolation parameter in the new signatures kwarg only. For now, interpolation cannot have a default value to avoid ambiguity with the deprecated signature. However, due to limitations of codegen and C++, we cannot have a required arg after optional ones. Thus, this PR also makes dim and keepdim requires args. Once we can remove the old signatures, dim, keepdim and interpolation parameters in the new signature will get the default values back.

__TODO__
 ---
- [ ] Run backward compat tests

This reverts commit 2f1d1eb7df.

Test Plan: Imported from OSS

Reviewed By: glaringlee

Differential Revision: D27337117

Pulled By: heitorschueroff

fbshipit-source-id: 7fe31f22027645e0d6cb3cab0392d532a4b362c9
2021-04-02 12:11:36 -07:00
lezcano
36c27fd0ac SVD docs improved (#54002)
Summary:
- Corrected a few errata in the SVD docs
- Made the notation more uniform (refer to `Vh` in `linalg.svd`, always use double tilts...)
- Wrote a better explanation about why the gradients of `U` and `V` are not well-defined when the input is complex or real but has repeated singular values. The previous one pointed to a somewhat obscure post on gauge theory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54002

Reviewed By: malfet

Differential Revision: D27459502

Pulled By: mruberry

fbshipit-source-id: f5c35eca02d35dadd2fc0eeadfacc8824f409400
2021-04-01 09:31:40 -07:00
Kurt Mohler
6c235ef267 Allow std=0 in torch.normal, and error if std<0 (#51317)
Summary:
Part of https://github.com/pytorch/pytorch/issues/49998

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51317

Reviewed By: bdhirsh

Differential Revision: D27253939

Pulled By: mruberry

fbshipit-source-id: af7a72c3d91549b1a88b73849b6973e7619dc50b
2021-03-31 21:06:07 -07:00
kshitij12345
c9d0c855f7 [special] Alias for special.expm1 and special.exp2 (#54670)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54670

Reviewed By: H-Huang

Differential Revision: D27401440

Pulled By: mruberry

fbshipit-source-id: 02b1fd0e8ffd3f5a017d6b6b9229b76b92b4b745
2021-03-30 10:03:13 -07:00
Jeff Yang
6dedecc77c docs: add memory_format in torch.empty (#54664)
Summary:
fixes https://github.com/pytorch/pytorch/issues/43504

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54664

Reviewed By: ailzhang

Differential Revision: D27328504

Pulled By: zou3519

fbshipit-source-id: 6c3e11473ada34f7e9fae7bae366328e50f71b0e
2021-03-29 10:23:36 -07:00
Jeff Yang
12a454788b docs: fix parameter in torch.take (#54667)
Summary:
fixes https://github.com/pytorch/pytorch/issues/43495
https://11812612-65600975-gh.circle-artifacts.com/0/docs/generated/torch.take.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54667

Reviewed By: ailzhang

Differential Revision: D27328252

Pulled By: zou3519

fbshipit-source-id: 5812ebdaba063ca0a9c0f4a9becd00a570d84d30
2021-03-29 10:01:23 -07:00
kshitij12345
0527d14248 [numpy] Add torch.take_along_dim (#52833)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/38349

Wrapper around the existing `torch.gather` with broadcasting logic.

TODO:
* [x] Add Doc entry (see if phrasing can be improved)
* [x] Add OpInfo
* [x] Add test against numpy
* [x] Handle broadcasting behaviour and when dim is not given.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52833

Reviewed By: malfet

Differential Revision: D27319038

Pulled By: mruberry

fbshipit-source-id: 00f307825f92c679d96e264997aa5509172f5ed1
2021-03-28 05:22:51 -07:00
Heitor Schueroff
591084abb8 Deprecate torch.matrix_power in favor of torch.linalg.matrix_power (#53538)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53538

* #52608 Added torch.linalg.matrix_power

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D27261531

Pulled By: heitorschueroff

fbshipit-source-id: 5a944b390f3cc6896c2aa92ba467319ddc9309e4
2021-03-23 15:11:24 -07:00
kshitij12345
afb560065c [testing] OpInfo for sgn and sign (#53885)
Summary:
Reference https://github.com/pytorch/pytorch/issues/42515

TODO:
* [x] Check rendered docs. https://11525594-65600975-gh.circle-artifacts.com/0/docs/generated/torch.sgn.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53885

Reviewed By: ejguan

Differential Revision: D27114318

Pulled By: mruberry

fbshipit-source-id: 678179d87741aacd3b50f03dc460207c5aa29589
2021-03-22 09:39:40 -07:00
Yukio Siraichi
27048c1dfa Remove legacy constructor calls from _torch_ folder. (#53889)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53146
Related to https://github.com/pytorch/pytorch/issues/47112

As mentioned in https://github.com/pytorch/pytorch/issues/47112, the plan is to:

1. Verify that all `torch.Tensor()` scenarios are covered by other functions
2. Scrub internal `torch.Tensor()` uses
3. Update the docs and throw `TORCH_WARN_ONCE` if someone uses `torch.Tensor()`

In this PR, I replaced all occurrences of `torch.Tensor` present in the _torch_ folder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53889

Reviewed By: walterddr, zou3519

Differential Revision: D27190743

Pulled By: jbschlosser

fbshipit-source-id: 7ecc201d57935b8dbb98ae3718b60d95cb55a010
2021-03-19 15:20:19 -07:00
kshitij12345
bfd009836e [torch.special] Add special.erf{c, inv} (#53260)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Also adds `overrides` entry for module and the newly added functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53260

Reviewed By: agolynski

Differential Revision: D27114342

Pulled By: mruberry

fbshipit-source-id: b1dd88f373db251bb71df12d33b160382138f63f
2021-03-18 19:06:25 -07:00
Ivan Yashchuk
564456ac44 Added autograd support for torch.orgqr (#52637)
Summary:
This PR adds autograd support for `torch.orgqr`.

Since `torch.orgqr` is one of few functions that expose LAPACK's naming and all other linear algebra routines were renamed a long time ago, I also added a new function with a new name and `torch.orgqr` now is an alias for it.

The new proposed name is `householder_product`. For a matrix `input` and a vector `tau` LAPACK's orgqr operation takes columns of `input` (called Householder vectors or elementary reflectors) scalars of `tau` that together represent Householder matrices and then the product of these matrices is computed. See https://www.netlib.org/lapack/lug/node128.html.
Other linear algebra libraries that I'm aware of do not expose this LAPACK function, so there is some freedom in naming it. It is usually used internally only for QR decomposition, but can be useful for deep learning tasks now when it supports differentiation.

Resolves https://github.com/pytorch/pytorch/issues/50104

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52637

Reviewed By: agolynski

Differential Revision: D27114246

Pulled By: mruberry

fbshipit-source-id: 9ab51efe52aec7c137aa018c7bd486297e4111ce
2021-03-18 05:42:18 -07:00
mattip
ae154a8c2c various doc building cleanups (#53851)
Summary:
brianjo
- Add a javascript snippet to close the expandable left navbar sections 'Notes', 'Language Bindings', 'Libraries', 'Community'
- Fix two latex bugs that were causing output in the log that might have been misleading when looking for true doc build problems
- Change the way release versions interact with sphinx. I tested these via building docs twice: once with `export RELEASE=1` and once without.
  - Remove perl scripting to turn the static version text into a link to the versions.html document. Instead, put this where it belongs in the layout.html template. This is the way the domain libraries (text, vision, audio) do it.
  -  There were two separate templates for master and release, with the only difference between them is that the master has an admonition "You are viewing unstable developer preview docs....". Instead toggle that with the value of `release`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53851

Reviewed By: mruberry

Differential Revision: D27085875

Pulled By: ngimel

fbshipit-source-id: c2d674deb924162f17131d895cb53cef08a1f1cb
2021-03-16 15:01:59 -07:00
Xiong Wei
da10ccd35f Implements cpu_kernel_multiple_outputs and torch.frexp (#51097)
Summary:
Close https://github.com/pytorch/pytorch/issues/51108
Related https://github.com/pytorch/pytorch/issues/38349

This PR implements the `cpu_kernel_multiple_outputs` to support returning multiple values in a CPU kernel.
```c++
auto iter = at::TensorIteratorConfig()
  .add_output(out1)
  .add_output(out2)
  .add_input(in1)
  .add_input(in2)
  .build();

at::native::cpu_kernel_multiple_outputs(iter,
  [=](float a, float b) -> std::tuple<float, float> {
    float add = a + b;
    float mul = a * b;
    return std::tuple<float, float>(add, mul);
  }
);
```

The `out1` will equal to `torch.add(in1, in2)`, while the result of `out2` will be `torch.mul(in1, in2)`.
It helps developers implement new torch functions that return two tensors more conveniently, such as NumPy-like functions [divmod](https://numpy.org/doc/1.18/reference/generated/numpy.divmod.html?highlight=divmod#numpy.divmod) and [frexp](https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp).

This PR adds `torch.frexp` function to exercise the new functionality provided by `cpu_kernel_multiple_outputs`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51097

Reviewed By: albanD

Differential Revision: D26982619

Pulled By: heitorschueroff

fbshipit-source-id: cb61c7f2c79873ab72ab5a61cbdb9203531ad469
2021-03-15 10:44:32 -07:00
Ivan Yashchuk
fe08671756 Added cuBLAS path for torch.triangular_solve (#53147)
Summary:
This PR adds the cuBLAS based path for `torch.triangular_solve`
The device dispatching helper function was removed from native_functions.yml, it is replaced with DECLARE/DEFINE_DISPATCH.

`magmaTriangularSolve` is removed and replaced with cuBLAS calls, this is not a BC-breaking change because internally MAGMA just calls the same cuBLAS function and doesn't do anything else.

Batched cuBLAS is faster than batched MAGMA for matrices of size up until 512x512, after that MAGMA is faster. For batches smaller than ~8 and matrix sizes larger than 64x64 a forloop of cuBLAS calls is faster than batched version.

Ref. https://github.com/pytorch/pytorch/issues/47953

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53147

Reviewed By: heitorschueroff

Differential Revision: D27007416

Pulled By: mruberry

fbshipit-source-id: ddfc190346e6a56b84145ed0a9af67ca9cde3506
2021-03-12 13:38:42 -08:00
iramazanli
e90e773445 Fix to empty_like example (#53088)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/52375

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53088

Reviewed By: zou3519

Differential Revision: D26752772

Pulled By: iramazanli

fbshipit-source-id: 21e395c6bbfd8f2cc808ddc12aefb2a426bb50d0
2021-03-08 13:19:47 -08:00
Edward Yang
758fb94fcb Prefix assert_async with underscore, fix some bugs in assert_async CUDA testing (#53276)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53276

- One of the tests had a syntax error (but the test
  wasn't fine grained enough to catch this; any error
  was a pass)
- Doesn't work on ROCm

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D26820048

Test Plan: Imported from OSS

Reviewed By: mruberry

Pulled By: ezyang

fbshipit-source-id: b02c4252d10191c3b1b78f141d008084dc860c45
2021-03-05 17:36:01 -08:00
kshitij12345
e9d7137072 fixes #38775 #38779: complex support for linspace and logspace (#38875)
Summary:
Closes https://github.com/pytorch/pytorch/issues/38775, Closes https://github.com/pytorch/pytorch/issues/38779

TO-DO:
* [x] Add Tests

Quansight Tracking : q-38775, q-38779

Pull Request resolved: https://github.com/pytorch/pytorch/pull/38875

Reviewed By: malfet

Differential Revision: D26628530

Pulled By: anjali411

fbshipit-source-id: ca4259b9f6725c4a4350f944465327169d12122e
2021-03-05 08:37:55 -08:00
Edward Yang
cfd9360d09 Revert D26837780: Revert D26819810: Revert D26815021: Revert D26744062: Add assert_async
Test Plan: revert-hammer

Differential Revision:
D26837780

Original commit changeset: 21567cab5c0f

fbshipit-source-id: 8ea735e5fdc97e32ae3fafd40297a1b8a7cd34b0
2021-03-04 20:45:35 -08:00
Edward Yang
1accffe450 Revert D26819810: Revert D26815021: Revert D26744062: Add assert_async
Test Plan: revert-hammer

Differential Revision:
D26819810

Original commit changeset: e528260e1aa9

fbshipit-source-id: 21567cab5c0ff5f5e60a699d4d4678773a567c30
2021-03-04 18:48:56 -08:00
Edward Yang
9e5e5a7d96 Revert D26815021: Revert D26744062: Add assert_async
Test Plan: revert-hammer

Differential Revision:
D26815021

Original commit changeset: 972eaafcdf14

fbshipit-source-id: e528260e1aa91df1873c73af00aa57addd671607
2021-03-04 09:28:25 -08:00
Mike Ruberry
b864457743 Revert D26744062: Add assert_async
Test Plan: revert-hammer

Differential Revision:
D26744062 (12d63cc2f5)

Original commit changeset: be6d2653afe5

fbshipit-source-id: 972eaafcdf14d96abdec3dea6bcbd5cac1f3d759
2021-03-04 04:11:25 -08:00
kshitij12345
c4c77e2001 [special] add torch.special namespace (#52296)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

 * Add `torch.special` namespace
* Add `torch.special.gammaln` (alias to `torch.lgamma`)

TODO:
* Add proper entries for docs.
   * [x] Add .rst file entry
   * [x] Add documentation
   * [x] Update `lgamma` OpInfo entry for alias to `special.gammaln`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52296

Reviewed By: ngimel

Differential Revision: D26754890

Pulled By: mruberry

fbshipit-source-id: 73479f68989d6443ad07b7b02763fa98973c15f6
2021-03-04 00:04:36 -08:00
Edward Yang
12d63cc2f5 Add assert_async (#53086)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53086

Fixes #36853

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D26744062

Pulled By: ezyang

fbshipit-source-id: be6d2653afe584adf67a05b5d43185b40764650d
2021-03-03 16:18:07 -08:00
momohatt
3403babd94 [doc] Fix documentations of torch functions (#52982)
Summary:
This PR includes multiple small fixes of docstrings.

* Fix documentation for [`torch.atleast_2d`](https://pytorch.org/docs/master/generated/torch.atleast_2d.html) and [`torch.atleast_3d`](https://pytorch.org/docs/master/generated/torch.atleast_3d.html) by adding a new line before `Args::`.
* Fix indentation for [`torch.isfinite`](https://pytorch.org/docs/master/generated/torch.isfinite.html) and [`torch.isinf`](https://pytorch.org/docs/master/generated/torch.isinf.html). The "Arguments", "Parameters" and "Examples" sections need to be at the same level as the first description.
* Insert a new line after `Example::` where it is missing. This makes difference in the way the documentations are rendered: see [this](https://pytorch.org/docs/master/generated/torch.gt.html) (with a new line) and [this](https://pytorch.org/docs/master/generated/torch.triu_indices.html) (without). As the majority of the docs seems to follow the former style, this PR amends the latter cases.
* Fix the "Returns" section of [`torch.block_diag`](https://pytorch.org/docs/master/generated/torch.block_diag.html) and [`torch.cartesian_prod`](https://pytorch.org/docs/master/generated/torch.cartesian_prod.html). The second and the subsequent lines shouldn't be indented, as can be seen in the docstring of [`torch.vander`](https://pytorch.org/docs/master/generated/torch.vander.html).
* Fix variable names in the example of `torch.fft.(i)fftn`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52982

Reviewed By: mruberry

Differential Revision: D26724408

Pulled By: H-Huang

fbshipit-source-id: c65aa0621f7858b05fd16f497caacf6ea8eb33c9
2021-03-01 09:59:57 -08:00
Nikita Vedeneev
9699c703c2 Stable sort for the CPU take 2. (#51790)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/38681.
A duplicate of https://github.com/pytorch/pytorch/pull/50052 created to become importable to the fb internal tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51790

Reviewed By: agolynski

Differential Revision: D26279045

Pulled By: glaringlee

fbshipit-source-id: 348e171dee9c370a76002b65d0c82c329f57a421
2021-02-19 09:28:57 -08:00
Alban Desmaison
e0d9d0f248 update symeig backward note about similar eigenvalues (#52311)
Summary:
First part of https://github.com/pytorch/pytorch/issues/49886 to at least properly warn users of the current state

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52311

Reviewed By: soulitzer

Differential Revision: D26495644

Pulled By: albanD

fbshipit-source-id: 72abdfe41cdbcc1ac739a536eb85d1aa4ba90897
2021-02-17 19:07:25 -08:00
Mike Ruberry
1795398c24 Updates rounding_mode documentation to remove "true" (#52202)
Summary:
In design review the use of the word "true" for a "rounding mode" which actually performed no rounding was, understandably, considered confusing. This PR updates the documentation to remove references to "true." The signatures for torch.div and torch.divide are updated to reflect the future behavior where rounding_mode=None will be the default.

This is slightly inaccurate. Today when rounding mode is not specified it is effectively None, but users cannot actually specify rounding_mode=None today. That change was considered too disruptive to the 1.8 branch cut process.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52202

Reviewed By: gchanan

Differential Revision: D26424979

Pulled By: mruberry

fbshipit-source-id: db3cc769c0d9c6d7e42bfad294073c99fa9168d9
2021-02-12 09:19:39 -08:00
Mike Ruberry
594a66d778 Warn about floor_divide performing incorrect rounding (#50281) (#50281)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50281

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51745

Test Plan: Imported from OSS

Reviewed By: ngimel

Pulled By: mruberry

Differential Revision: D26257855

fbshipit-source-id: e5d497cf07b0c746838ed081c5d0e82fb4cb701b
2021-02-10 03:13:34 -08:00
Jeffrey Wan
159c48b19b Fix triplet margin loss and reciprocal docs (#51650)
Summary:
Reciprocal: the note should be placed after the formula

Triplet-margin-loss (before):
![image](https://user-images.githubusercontent.com/13428986/106784863-cb3eb780-661a-11eb-8372-07b51e4cb2d4.png)
After:
![image](https://user-images.githubusercontent.com/13428986/106784948-e5789580-661a-11eb-890c-6185aab96e54.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51650

Reviewed By: izdeby

Differential Revision: D26314151

Pulled By: soulitzer

fbshipit-source-id: d7574e64e96a41a515231ba7e1008de8b2f292aa
2021-02-08 12:15:11 -08:00
Vasiliy Kuznetsov
8c48af822e pytorch docs: add fake_quantize functions documentation (#51748)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51748

Adding docs for `fake_quantize_per_tensor_affine` and `fake_quantize_per_channel_affine`
functions.

Note: not documenting `fake_quantize_per_tensor_affine_cachemask` and
`fake_quantize_per_channel_affine_cachemask` since they are implementation details
of `fake_quantize_per_tensor_affine` and `fake_quantize_per_channel_affine`,
and do not need to be exposed to the user at the moment.

Test Plan: Build the docs locally on Mac OS, it looks good

Reviewed By: supriyar

Differential Revision: D26270514

Pulled By: vkuzo

fbshipit-source-id: 8e3c9815a12a3427572cb4d34a779e9f5e4facdd
2021-02-05 17:53:02 -08:00
Heitor Schueroff
e7ff0854c6 [doc] Fix inconsistencies with torch.linalg.inv and deprecate torch.inverse (#51672)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51672

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D26240535

Pulled By: heitorschueroff

fbshipit-source-id: 16dbd0a8a8c0f851faa12bf092dbedfb7cb0b292
2021-02-04 17:19:45 -08:00