With `AdditionalInputs`, the behavior is the same as with tensors:
```python
class M(torch.nn.Module):
def forward(self, x, y):
return x + y
additional_inputs = torch.export.AdditionalInputs()
additional_inputs.add((5, 5))
additional_inputs.add((3, 5))
additional_inputs.add((5, 4))
ep = torch.export.export(
M(), (6, 7), dynamic_shapes=additional_inputs, strict=False
)
```
With `ShapesCollection`, we now need to wrap integer inputs as `_IntWrapper` so that we can have a unique identifier for each integer input.
```python
class M(torch.nn.Module):
def forward(self, x, y):
return x + y
from torch.export.dynamic_shapes import _IntWrapper
args = (_IntWrapper(5), _IntWrapper(5))
# Or we can do `args = pytree.tree_map_only(int, lambda a: _IntWrapper(a), orig_args)`
shapes_collection = torch.export.ShapesCollection()
shapes_collection[args[0]] = Dim.DYNAMIC
shapes_collection[args[1]] = Dim.DYNAMIC
ep = torch.export.export(
M(), args, dynamic_shapes=shapes_collection, strict=False
)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151842
Approved by: https://github.com/pianpwk
Summary: tree_flatten_with_map will internally call unflatten function with user supplied function. But this function was not returning anything causing the leaves to be None. This is wrong when the constructor is sensitive to this behaviour
Test Plan: CI
Differential Revision: D73388529
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151824
Approved by: https://github.com/bdhirsh
Summary:
as title
`export._trace._WrapperModule` is used to wrap functions into a Module so we can export the function.
We add `export._wrapper_utils` to `dynamo`'s `MOD_INLINELIST` so dynamo traces into `_WrapperModule`
Fixes https://github.com/pytorch/pytorch/issues/146867
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test:test_export -- -r wrapper_module
```
Differential Revision: D72986826
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151264
Approved by: https://github.com/angelayi
This has been pretty helpful for the size-oblivious rewrite. Wanted the variadic args version to avoid `sym_or(a, sym_or(b, sym_or(c, d)))` in favor of `sym_or(a, b, c, d)`. Happy to change this to ban the 1-arg version.
This is better than plain and/or because the whole symbolic expression gets preserved, and if we guard on it or defer as a runtime assert, we preserve all branches.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150456
Approved by: https://github.com/laithsakka
Summary:
as title
`export._trace._WrapperModule` is used to wrap functions into a Module so we can export the function.
We add `export._wrapper_utils` to `dynamo`'s `MOD_INLINELIST` so dynamo traces into `_WrapperModule`
Fixes https://github.com/pytorch/pytorch/issues/146867
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test:test_export -- -r wrapper_module
```
Differential Revision: D69434316
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146919
Approved by: https://github.com/angelayi
Summary: We need real_tensor on the FakeTensor in node.meta["val"] in order to aot_compile the draft exported programs. Otherwise, we cannot propagate real tensors even when fake_mode.propagate_real_tensors = True.
This also fixes real tensor propagation in `run_decomposition()`.
Test Plan:
```
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_dedup_data_dependent_failure
```
Differential Revision: D72732714
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150948
Approved by: https://github.com/angelayi
Summary:
att
regular weight has the type of torch.nn.parameter.Parameter
buffer and tensor constant has the type of torch.Tensor
both types are valid.
Test Plan: CI
Differential Revision: D72657275
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150867
Approved by: https://github.com/zhxchen17
Changes decomposition behavior of `aten.to` to respect the aliasing/non-aliasing behavior in eager, and to specialize to the input/conversion dtype & device.
Before change: we always decompose `aten.to` into `_to_copy`, regardless of aliasing behavior. This leads us to ban mutations on the result of `_to_copy` when aliased, since we can't guarantee correct program semantics. This meant users had to explicitly call `.clone()` before mutating. In the special cases where we don’t ban mutations (e.g. dtype conversion), we add runtime assertions on the input & conversion dtype/devices in the decomposed program (see https://github.com/pytorch/pytorch/pull/142420).
After change: we decompose to the aliasing/non-aliasing behavior that matches eager, allowing mutations in all cases. We also add dtype/device assertions for all `aten.to` ops, starting in the pre-dispatch graph, basically specializing the program to the dtype/devices.
Differential Revision: D71229547
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149235
Approved by: https://github.com/tugsbayasgalan
Summary:
Instead of explicitly specifying dynamic shapes, it is possible to infer them from additional example inputs. Together with the example inputs provided to export, we can basically make any varying dim dynamic and keep any fixed dim static. This should be useful for prod scenarios that have access to tests and/or profiling data, yet are somewhat removed from the model authoring process.
However this alone is not satisfactory: the exported program by design has only one graph, representing one path through the model, and we cannot necessarily guarantee that this graph works for the additional example inputs because different guards might have been created if we had exported with them instead (corresponding to different traced paths). However, checking that the additional example inputs satisfy the guards created by the original export should be sufficient for generalization.
Now, while we don't preserve all guards in the exported program, we do check a subset of them as part of input matching. So we add a verification step at the end of export when such additional example inputs are provided. This should be enough for now.
Test Plan: added test (positive and negative cases)
Differential Revision: D72001771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150144
Approved by: https://github.com/bobrenjc93
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows
Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic
Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....
Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.
We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
During tracing it is possible for a `s1: VR[2, inf]` to be replaced by a `s0: VR[3, inf]` (note smaller range) by the shape env. But after export, unfortunately we'd previously record `range_constraints[s0] = VR[2, inf]` (note larger range), which is incorrect.
This is because we'd map `s1.node.expr` (`s0`) to the `var_to_range` of `s1.node._expr` (`s1`) when creating `range_constraints`. The comment surrounding this code suggests this predated `bound_sympy`, but now we can do better.
For users, this means that when using `Dim.DYNAMIC` previously they wouldn't get input constraints checked sufficiently, now they do (shifting errors early).
Differential Revision: D71962694
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150103
Approved by: https://github.com/zhxchen17
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows
Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic
Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....
Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.
We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
Somehow the torch._dynamo.is_compiling is changed to torch.compiler.is_compiling(), which also checks whether we're exporting. This is not caught by cI because we don't have an export test for scan.
Changing to torch.compiler.is_dynamo_compiling and added a test.
edit: piggyback the re-tracing support in this PR. Related code in combine_fn_is_normalized.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149903
Approved by: https://github.com/zou3519
Summary: For Scalar variant resolution, we didn't handle a corner case of "Tensor_mode" variant (from aten::div). Adding the missing case to the graph pass.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_operator_aten_tensor_mode_variant_cpp_runtime
Differential Revision: D71638433
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149755
Approved by: https://github.com/yushangdi
Summary: adding operator.truediv and operator.neg support to the runtime
Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_sym_float_operators_cpp_runtime_nonstrict
Differential Revision: D71637267
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149754
Approved by: https://github.com/pianpwk