Fixes#83973 (This is a substitute PR for https://github.com/pytorch/pytorch/pull/85024)
First of all, thanks for your invaluable contributions to PyTorch everyone!
Given how extensively `torch.cuda.is_available` is used in the PyTorch ecosystem, IMHO it's worthwhile to provide downstream libraries/frameworks/users the ability to alter the default behavior of `torch.cuda.is_available` in the context of their PyTorch usage.
I'm confident there are many current and future such use cases which could benefit from leveraging a weakened, NVML-based `torch.cuda.is_available` assessment at a downstream framework's explicit direction (thanks @malfet 81da50a972 !). Though one could always patch out the `torch.cuda.is_available` function with another implementation in a downstream library, I think this environmental variable based configuration option is more convenient and the cost to including the option is quite low.
As discussed in https://github.com/pytorch/pytorch/pull/85024#issuecomment-1261542045, this PR gates new non-default NVML-based CUDA behavior with an environmental variable (PYTORCH_NVML_BASED_CUDA_CHK) that allows a user/framework to invoke non-default, NVML-based `is_available()` assessments if desired.
Thanks again for your work everyone!
@ngimel @malfet @awaelchli
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85951
Approved by: https://github.com/ngimel
Summary:
Added an additional roundup knob( ``roundup_bypass_threshold_mb``) to bypass rounding the requested allocation size, for allocation requests larger than the threshold value (in MB). This can help reduce the memory footprint when making large allocations that are expected to be persistent or have a large lifetime.
Differential Revision: D39868104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85940
Approved by: https://github.com/zdevito
In preparation of adopting future rocblas library options, it is necessary to track when the backward pass of training is executing. The scope-based helper class `BackwardPassGuard` is provided to toggle state.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71881
Approved by: https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74261
### Goal
Implement a cheap way to reclaim GPU memory (garbage collection) without incurring GPU sync.
### Why do we need this?
Currently, there are only two ways to reclaim GPU memory block already assigned to a particular stream.
- `release_available_cached_blocks(params)`: Free blocks exceeding the `CachingAllocatorConfig::max_split_size()` until we can satisfy the request.
Issue: If the `max_split_size` is unset (default), this function is a no-op. Even if this is set, the reclamation is quite conservative (e.g., never frees blocks under max_split_size).
- `release_cached_blocks()`: Waits for all the in-flight events and then reclaim blocks.
Issue: 'waiting for all event' is very expensive as it will likely stall all the GPU operations. Many GPU applications without a proper handling of potential GPU throttling would suffer/crash.
### Proposed idea
- If the garbage collection threshold is set, try to reclaim some memory blocks *without* synchronization. It should be safe to do so, as `release_available_cached_blocks` essentially does the same thing (but less aggressively).
- GC is triggered only when we fail to serve a `malloc` request from the block pool. No need to free blocks when the block pool is functioning just fine.
- Prioritize reclaiming blocks that weren't reused for long time. Reclamation stops once the used memory capacity < threshold.
- This code path is totally optional; by default it won't be invoked.
Test Plan:
- Unit tests
- Manually checked that the GPU memory usage stays as indicated by the garbage collector. If not the caching allocator at least tries to keep freeing the blocks.
Reviewed By: jianyuh
Differential Revision: D34482514
fbshipit-source-id: d5eae62ac60b94b0bca851f9d233a092d086e3c2
(cherry picked from commit 05780f1ed4b176f05e765b2411c9eaa2eaeb48b0)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74213
In the current CUDACachingAllocator, the sizes are rounded up in multiple of blocks size of 512, so this works for smaller sizes. However for large sizes, we can have lots of different size blocks in the larger pool. This is problematic when we have variable batch sizes 1001, 1021, 1023 -> all will go to different block size and will create different size of blocks. This will create lots of unused blocks and will waste GPU memory capacity.
This diff adds a rounding approach to allocation size. It rounds up the size to nearest power-of-2 divisions and the power2-division can be changed with env variable setting.
For example, if we need to round-up size of1200 and if number of divisions is 4,
the size 1200 lies between 1024 and 2048 and if we do 4 divisions between
them, the values are 1024, 1280, 1536, and 1792. So the function will
return 1280 as the nearest ceiling of power-2 division.
env setting:
export PYTORCH_CUDA_ALLOC_CONF=roundup_power2_divisions:4
ghstack-source-id: 151446017
Reviewed By: ezyang
Differential Revision: D34868036
fbshipit-source-id: 494785add16e6b37c920dcb5a2b81d4c637b554a
(cherry picked from commit 548454ccacbd8700e7ffd2d762e40b4ba37abbae)
Summary:
It is probably the most user friendly to link to that (lesser known?) feature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72584
Reviewed By: soulitzer
Differential Revision: D34173999
Pulled By: albanD
fbshipit-source-id: 99fff7a55412faf54888f8317ab2388f4d7d30e4
(cherry picked from commit 2191ee7657)
Summary:
https://github.com/pytorch/pytorch/issues/67578 disabled reduced precision reductions for FP16 GEMMs. After benchmarking, we've found that this has substantial performance impacts for common GEMM shapes (e.g., those found in popular instantiations of multiheaded-attention) on architectures such as Volta. As these performance regressions may come as a surprise to current users, this PR adds a toggle to disable reduced precision reductions
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = `
rather than making it the default behavior.
CC ngimel ptrblck
stas00 Note that the behavior after the previous PR can be replicated with
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67946
Reviewed By: zou3519
Differential Revision: D32289896
Pulled By: ngimel
fbshipit-source-id: a1ea2918b77e27a7d9b391e030417802a0174abe
Summary:
Related to https://github.com/pytorch/pytorch/issues/30987. Fix the following task:
- [ ] Remove the use of `.data` in all our internal code:
- [ ] ...
- [x] `docs/source/scripts/build_activation_images.py` and `docs/source/notes/extending.rst`
In `docs/source/scripts/build_activation_images.py`, I used `nn.init` because the snippet already assumes `nn` is available (the class inherits from `nn.Module`).
cc albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65358
Reviewed By: malfet
Differential Revision: D31061790
Pulled By: albanD
fbshipit-source-id: be936c2035f0bdd49986351026fe3e932a5b4032
Summary:
Powers have decided this API should be listed as beta.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65247
Reviewed By: malfet
Differential Revision: D31057940
Pulled By: ngimel
fbshipit-source-id: 137b63cbd2c7409fecdc161a22135619bfc96bfa
Summary:
Puts memory sharing intro under Sharing memory... header, where it should have been all along.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64996
Reviewed By: mruberry
Differential Revision: D30948619
Pulled By: ngimel
fbshipit-source-id: 5d9dd267b34e9d3fc499d4738377b58a22da1dc2
Summary:
This PR expands the [note on modules](https://pytorch.org/docs/stable/notes/modules.html) with additional info for 1.10.
It adds the following:
* Examples of using hooks
* Examples of using apply()
* Examples for ParameterList / ParameterDict
* register_parameter() / register_buffer() usage
* Discussion of train() / eval() modes
* Distributed training overview / links
* TorchScript overview / links
* Quantization overview / links
* FX overview / links
* Parametrization overview / link to tutorial
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63963
Reviewed By: albanD
Differential Revision: D30606604
Pulled By: jbschlosser
fbshipit-source-id: c1030b19162bcb5fe7364bcdc981a2eb6d6e89b4
Summary:
CUDA_VERSION and HIP_VERSION follow very unrelated versioning schemes, so it does not make sense to use CUDA_VERSION to determine the ROCm path. This note explicitly addresses it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62850
Reviewed By: mruberry
Differential Revision: D30547562
Pulled By: malfet
fbshipit-source-id: 02990fa66a88466c2330ab85f446b25b78545150