As per this [discussion](https://discuss.pytorch.org/t/a-question-about-requiredparameter/137977), I figured that `_RequiredParameter` is no longer used.
The `required` object was initially introduced in this [PR](4db6667923) as the `SGD` optimizer did not offer a default value for the learning rate. However there isn't a single place in the code base using `_RequiredParameter`, nor `required`. I am therefore removing unused `_RequiredParameter` and `required`.
Everything not included in this PR is Not a Contribution.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144771
Approved by: https://github.com/janeyx99
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**
(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)
## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
'state': {
0: {'momentum_buffer': tensor(...), ...},
1: {'momentum_buffer': tensor(...), ...},
},
'param_groups': [
{
'lr': 0.01,
'weight_decay': 0,
...
'params': [0,1]
'param_names' ['layer.weight', 'layer.bias'] (optional)
}
]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.
## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.
## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.
#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.
## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.
## Solution Example:
A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
# assuming a single param group.
current_state_group = optimizer.state_dict()['param_groups'][0]
loaded_state_group = state_dict['param_groups'][0]
# same number of params, same names, only different ordering
current_state_name_to_id_mapping = {} # mapping -- param_name: id
for i, name in enumerate(current_state_group['param_names']):
current_state_name_to_id_mapping[name] = current_state_group['params'][i]
# changing the ids of the loaded state dict to match the order of the given state dict.
for i, name in enumerate(current_state_group['param_names']):
loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]
return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.
### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
There could be some cases where the params have the meta device when calling optimizer's dunder init and those params are materialized in the first computation. This change would allow such situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131153
Approved by: https://github.com/mlazos, https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.
Resolves#126888
- #126888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127122
Approved by: https://github.com/kit1980
This continues the full deprecation after https://github.com/pytorch/pytorch/pull/114425. It's been 6 months! And I'm fairly certain no one is going to yell at me as this patch is not really used.
------
# BC Breaking note
As of this PR, SparseAdam will become consistent with the rest of our optimizers in that it will only accept containers of Tensors/Parameters/param groups and fully complete deprecation of this path. Hitherto, the SparseAdam constructor had allowed raw tensors as the params argument to the constructor. Now, if you write the following code, there will be an error similar to every other optim: "params argument given to the optimizer should be an iterable of Tensors or dicts"
```
import torch
param = torch.rand(16, 32)
optimizer = torch.optim.SparseAdam(param)
```
Instead you should replace the last line with
```
optimizer = torch.optim.SparseAdam([param])
```
to no longer error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127081
Approved by: https://github.com/soulitzer
Since we now will support `capturable=False` when it's valid, narrow the eager fallback conditions to the cases where `compile` will fail. The lone case here is when the user deletes the capturable flag; `state_steps` are on cuda and `capturable` is `False`. Because a cuda tensor is not supported in the `value` kwarg for foreach ops this results in an error.
The fallback wrapper is changed to check the device of `state_steps` if `capturable=False`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125825
Approved by: https://github.com/janeyx99
This resolves a bug in eager where if an old state dict is loaded (without the capturable flag) but the original dict had the capturable flag, then state_steps would be on cuda but we would take the non-capturable path. We now fallback to eager if capturable=False.
Current design doc and discussion: https://docs.google.com/document/d/1DmmbiaSp16CDZtGw1qzXKHFTY_0gqc0xpnBdviXq0vk/edit#heading=h.871u7bvwz7ze
Note on the actual fallback logic - there was an issue with torchscript originally not handling *args, **kwargs properly, after rectifying that by using `functools.wraps`, there was an additional bug with scoping which required the single tensor implementation to be in the global scope at the time of the fallback closure being created. I pass in the single tensor function to the `_disable_dynamo_if_unsupported` decorator to workaround this bug.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123619
Approved by: https://github.com/janeyx99
Should allow for uses cases mentioned in #110940
This would allow scalars to also be float64s in the foreach implementation. The fused implementation would still create a float32 step on Adam and AdamW. This PR also does NOT worry about performance and is mainly for enablement.
Next steps:
- Relax the constraint on fused adam(w) and allow torch.float64 scalars there
- Allow _performant_ mixed dtypes in foreach (a bigger project in itself).
This PR will conflict with my other PRs, I will figure out a landing order
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115841
Approved by: https://github.com/albanD
Removes a part of the sparse adam test and the following three tests: `test_fused_optimizer_raises`, `test_duplicate_params_across_param_groups`, `test_duplicate_params_in_one_param_group`
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (d2d129de)]$ python test/test_optim.py -k test_fused_optimizer_raises -k test_duplicate_params_across_param_groups -k test_duplicate_params_in_one_param_group
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
...
----------------------------------------------------------------------
Ran 3 tests in 0.023s
OK
```
Increases coverage by testing the duplicate param tests on ALL the optims instead of just one each. Also fixes SparseAdam bug which was accidentally calling torch.unbind through list instead of putting params in a list. This bug was caught by migrating the weird warning stuff to just one easy warning context manager, which checks that nothing else gets raised.
The new test_errors does not run slower than before, overhead is still king:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (d2d129de)]$ python test/test_optim.py -k test_errors
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
..........................
----------------------------------------------------------------------
Ran 26 tests in 10.337s
OK
```
Compared to test_errors BEFORE my commit :p
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (b47aa696)]$ python test/test_optim.py -k test_errors
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
.............sssssssssssss
----------------------------------------------------------------------
Ran 26 tests in 11.980s
OK (skipped=13)
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (b47aa696)]$
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116315
Approved by: https://github.com/mikaylagawarecki
Context:
https://github.com/pytorch/pytorch/pull/47724 fixed the problem that SparseAdam could not handle generators by using the `list(...)` construct. However, this meant that SparseAdam deviated from other optimizers in that it could _accept_ a raw Tensors/Parameter vs requiring a container of them. This is not really a big deal.
So why this PR?
I do think this PR is cleaner. It uses the fact that the Optimizer parent class already containerizes parameters into parameter groups, so we could reuse that here by calling `super().__init__` first and then filter the param_groups after. This change would also make SparseAdam consistent with the rest of our optimizers in that only containerized params are accepted, which technically is BC breaking SO I've added a deprecation warning that we should remove in May 2024.
(But is it really BC breaking when we've said in the docs that params should be an iterable this whole time? Maybe this is just a bug fix....😛)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114425
Approved by: https://github.com/drisspg
While reading the documentation of the optimizers I noticed the description of the `maximize` option is misleading. It currently reads as if the parameters would we maximized, which is factually incorrect. This PR proposes a more clear description.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112724
Approved by: https://github.com/albanD