Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32907
All op-specific information used in this logic was available to the
parser itself, so the check can be done in that context, no codegen
needed.
No change in the warning behavior itself, mod minor formatting tweak -
passes existing tests. Saves like ~275K binary size on mac:
```
-rwxr-xr-x 1 bhosmer 1876110778 16502064 Feb 1 00:43 torch/lib/libtorch_python.dylib
-rwxr-xr-x 1 bhosmer 1876110778 16247888 Feb 1 00:44 torch/lib/libtorch_python.dylib
```
[codegen diff](https://github.com/bhosmer/scratch/compare/deprecation_warning_before...deprecation_warning_after)
More important than the size savings is the minimization of codegen. Ideally the generated artifact should express distinctive per-op properties in as minimal a form as practically possible - e.g. here instead of generating check-and-warn behavior into every binding, we generate only the data that triggers the behavior in the parser. (And actually we were generating it already.)
Test Plan: Imported from OSS
Differential Revision: D19679928
Pulled By: bhosmer
fbshipit-source-id: cf0140573118430720c6b797c762fe5be98acd86
Summary:
Continuation of https://github.com/pytorch/pytorch/issues/31514, fixes https://github.com/pytorch/pytorch/issues/28430
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32009
Test Plan:
I verified that the deprecation warnings only occur once on a relevant workflow. Built with:
```
buck build mode/opt //vision/fair/detectron2/tools:train_net
```
Ran with:
```
DETECTRON2_ENV_MODULE=detectron2.fb.env ~/local/train_net.par --config-file configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml --num-gpus 1 SOLVER.IMS_PER_BATCH 2
```
Inspected log:
```
[01/14 07:28:13 d2.engine.train_loop]: Starting training from iteration 0
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1299: UserWarning: This overload of add is deprecated:
add(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add(Tensor other, Number alpha)
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1334: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, Number alpha)
[01/14 07:28:25 d2.utils.events]: eta: 0:00:10 iter: 19 total_loss: 1.699 loss_cls: 1.185 loss_box_reg: 0.501 time: 0.5020 data_time: 0.0224 lr: 0.000100 max_mem: 3722M
[01/14 07:28:35 fvcore.common.checkpoint]: Saving checkpoint to ./output/model_final.pth
```
Differential Revision: D19373523
Pulled By: ezyang
fbshipit-source-id: 75756de129645501f43ecc4e3bf8cc0f78c40b90
Summary:
Fixes https://github.com/pytorch/pytorch/issues/28430
The unpythonic signatures for functions such as `torch.addcdiv` are already seperated in [`deprecated.yaml`] and the signatures marked as deprecated in `PythonArgParser`. However, nothing was done with this information previously. So, this now emits a warning when the deprecated signatures are used.
One minor complication is that if all arguments are passed as keyword args then there is nothing to differentiate the deprecated overload. This can lead to false warnings being emitted. So, I've also modified `PythonArgParser` to prefer non-deprecated signatures.
[`deprecated.yaml`]: https://github.com/pytorch/pytorch/blob/master/tools/autograd/deprecated.yaml
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31514
Differential Revision: D19298735
Pulled By: ezyang
fbshipit-source-id: 03cb78af17658eaab9d577cd2497c6f413f07647
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.
I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730
Differential Revision: D18813270
Pulled By: ezyang
fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620
All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.
When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:
- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
- Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
- Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)
Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`
The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:
- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.
Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: dreiss
Differential Revision: D18171156
Pulled By: ezyang
fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060
This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.
This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.
The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.
Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.
Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.
My plan is to benchmark a few functions and then post the results in a
comment to this PR.
Test Plan: - [namedtensor ci]
Differential Revision: D17331635
Pulled By: zou3519
fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
Summary:
Improve handling of mixed-type tensor operations.
This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).
For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.
The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst
Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.
See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273
Reviewed By: gchanan
Differential Revision: D16582230
Pulled By: nairbv
fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
Summary:
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: [pytorch-cpu-strided-complex extension](https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex)
Note: These changes do not support AVX/SSE operations on complex tensors.
Changes so far:
- [x] Added complex support of torch.empty.
- [x] Added complex support of CopyKernels
- [x] Added complex support of BinaryOp kernels
Once these changes are applied the rest of the kernels are pretty easy.
ezyang
I have fixed the issues in the original [PR: 25373](https://github.com/pytorch/pytorch/pull/25373).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25534
Differential Revision: D17188390
Pulled By: ezyang
fbshipit-source-id: ade9fb00b2caa89b0f66a4de70a662b62db13a8c
Summary:
Speeds up the common case where Tensor is a torch.Tensor (not a
subclass). This reduces the number of executed instructions for a
torch.add(tensor1, tensor2) by ~328 (should be ~65 ns faster).
Note that most of the PythonArgs accessors are too large to be inlined.
We should move most of them to the cpp file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22782
Differential Revision: D16223592
Pulled By: colesbury
fbshipit-source-id: cc20f8989944389d5a5e3fab033cdd70d581ffb1
Summary:
Currently the build system accepts USE_NAMEDTENSOR from the environment
variable and turns it into NAMEDTENSOR_ENABLED when passing to CMake.
This discrepancy does not seem necessary and complicates the build
system. The naming of this build option is also semantically incorrect
("BUILD_" vis-a-vis "USE_"). This commit eradicate this issue before it
is made into a stable release.
The support of NO_NAMEDTENSOR is also removed, since PyTorch has been
quite inconsistent about "NO_*" build options.
---
Note: All environment variables with their names starting with `BUILD_` are currently automatically passed to CMake with no need of an additional wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22360
Differential Revision: D16074509
Pulled By: zou3519
fbshipit-source-id: dc316287e26192118f3c99b945454bc50535b2ae
Summary:
Another simple bit of syntax that NumPy supports and we don't.
Support int, float, and bool.
```python
>>> torch.randn((2,3), dtype=float)
tensor([[-0.1752, -0.3240, -0.6148],
[ 0.1861, 1.6472, 0.1687]], dtype=torch.float64)
```
A bit confusingly, Python's "float" actually means double, but nothing we can do about that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21215
Differential Revision: D15697012
Pulled By: umanwizard
fbshipit-source-id: 9a38d960a610b8e67023486b0c9265edd3c22246
Summary:
#19975 was separated by 2 PRs.
This one:
Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.
At this moment both functions just operate with strides and doesn't store any tensor state.
(Original RFC #19092)
-----
Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).
Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.
1. `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.
- Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.
`x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.
2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.
- `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.
Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455
Differential Revision: D15341577
Pulled By: VitalyFedyunin
fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
Summary:
Add automatic translations for a few argument names that commonly differ between PyTorch and NumPy.
For now, they are as follows:
* `keepdim` -> `keepdims`
* `dim` -> `axis`
* `input` -> (any of `a`, `x`, `x1`)
* `other` -> `x2`
Basic examples:
```python
>>> t=torch.randn(10,10)
>>> torch.sum(x=t, axis=1)
tensor([ 0.5199, -0.3768, 4.3619, -0.9105, 1.1804, 1.0837, -0.9036, 0.2365,
1.1171, -0.0999])
```
```python
>>> torch.add(x1=5, x2=6)
tensor(11)
```
The additional overhead is zero when using traditional PyTorch argument names, and a few (usually 1) extra PyDict lookups when using NumPy argument names.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20451
Differential Revision: D15337521
Pulled By: umanwizard
fbshipit-source-id: 7a7d389786f4ccf5c86a14ecb2002c61730c51b5
Summary:
Currently the following code gives an error on python 2 because `ret` is a structseq which is not a tuple
```python
ret = a.max(dim=0)
ret1 = torch.max(a, dim=0, out=ret)
```
This PR modify tuple check in python arg parser to allow structseq to be input of operators where tuple is expected, which would make the above code work.
Depend on: https://github.com/pytorch/pytorch/pull/17136
Partially fixes: https://github.com/pytorch/pytorch/issues/16813
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17208
Differential Revision: D14280198
Pulled By: VitalyFedyunin
fbshipit-source-id: beffebfd3951c4f5c7c8fe99a5847616a89491f3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
We have:
- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
done in `torch/__init__.pyi.in`
For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.
An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500
Differential Revision: D13695553
Pulled By: ezyang
fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
Summary:
For #6593 and #9515
This completes the support for optional<ScalarType> in native, JIT and autograd.
Note: Mostly following the existing implementation for optional<Scalar> that was added in https://github.com/pytorch/pytorch/pull/12582.
This PR introduces a way to make functions accept an optional dtype and it will unblock #9515 by allowing the `dtype` param for type promotion interface:
```
func: name(inputs, *, ScalarType? dtype=None, Casting casting=same_kind)
```
An alternative approach could have been using `ScalarType::Undefined` for the same purpose but without optional, though it would have been a bit hacky.
```
func: name(inputs, *, ScalarType dtype=Undefined, Casting casting=same_kind)
```
Here's an example use of this in action: 971f69eac6
There are already a bunch of native functions that were getting optional `dtype` through function overloading. https://github.com/pytorch/pytorch/pull/15133 is the attempt to migrate all of those. I will send those changes separately after this since some functions (e.g. sum) need quite a bit of change in the codebase. See the commits over there.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15154
Differential Revision: D13457760
Pulled By: tugrulates
fbshipit-source-id: 706134f0bd578683edd416b96329b49a1ba8ab48
Summary:
This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198
Differential Revision: D13468797
Pulled By: goldsborough
fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
This PR adds optional type to ATen native, autograd, JIT schema and Python Arg parser, closes#9513. It allows us to use optional default values (including None) for function signature and implementations like clamp, etc., and also let us remove the python_default_init hack.
Follow up:
remove python_default_init completely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12582
Differential Revision: D10417423
Pulled By: wanchaol
fbshipit-source-id: 1c80f0727bb528188b47c595629e2996be269b89
Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
Arg parser allowed additional positional args to be parsed into keyword-only params.
Fixes a couple cases:
- The positional argument happens to be of the right type, and it just works silently. Now, we fail as expected.
- The positional argument fails later down the line. Now, we fail at the appropriate time and get a better error message.
Pre-fix:
```
>>> torch.cuda.LongTensor((6, 0), 1, 1, 0)
tensor([6, 0], device='cuda:1')
```
Post-fix:
```
>>> torch.cuda.LongTensor((6, 0), 1, 1, 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: new() received an invalid combination of arguments - got (tuple, int, int, int), but expected one of:
* (torch.device device)
* (torch.Storage storage)
* (Tensor other)
* (tuple of ints size, torch.device device)
* (object data, torch.device device)
```
Pre-fix:
```
>>> a = torch.tensor(5)
>>> a.new_zeros((5,5), 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: new_zeros(): argument 'dtype' (position 2) must be torch.dtype, not int
```
Post-fix:
```
>>> a = torch.tensor(5)
>>> a.new_zeros((5,5), 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: new_zeros() takes 1 positional argument but 2 were given
```
fixes#8351
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10499
Differential Revision: D9811093
Pulled By: li-roy
fbshipit-source-id: ce946270fd11b264ff1b09765db3300879491f76
Summary:
- Just a simple fix to support `fill_`
- And a fix for indexing in `pytorch-complex`
Differential Revision: D9804061
Pulled By: ezyang
fbshipit-source-id: 631129b3fa220a9670770b3766f14a8e03633bdf
Summary:
Allows mulitplication of e.g. numpy.float32 with tensors.
This came up with #9468
If you want this and after the other patch is done, I'll add tests (but that would be conflicting, so I prefer to wait).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9659
Differential Revision: D8948078
Pulled By: weiyangfb
fbshipit-source-id: c7dcc57b63e2f100df837f70e1299395692f1a1b
Summary:
```
This adds TensorIterator, a helper class for computing element-wise
operations that's intended to replace the CPU and CUDA apply utils
functions.
CPU kernels are implemented as functions that operate on strided 1-d
tensors compared to CPUApplyUtils which operated individual elements. This
allows the kernels to handle vectorization, while TensorIterator handles
parallelization and non-coalesced dimensions.
GPU kernels continue to operate on elements, but the number of
specializations is reduced. The contiguous case remains the same. The
non-contiguous case uses a single (reduced) shape for all operands and
the fast integer division from THCIntegerDivider. To avoid extra
specializations for indexing with 64-bits, large operations are split
into smaller operations that can be indexed with 32-bits.
Major semantic changes:
- No more s_add, s_mul, s_div, or s_sub. Broadcasting is handled by
TensorIterator. The autograd engine performs the reduction assuming
standard broadcasting if the gradient shape does not match the
expected shape. Functions that do not use standard broadcasting rules
should either continue to trace the expand calls or handle the
reduction in their derivative formula.
- Use ONNX v7, which supports broadcasting ops.
Performance impact:
- Small increased fixed overhead (~0.5 us)
- Larger overhead for wrapped numbers (~2.5 us)
- No significant change for ops on contiguous tensors
- Much faster worst-case performance for non-contiguous GPU tensors
- Faster CPU bias addition (~2x)
- Faster GPU bias addition (~30% faster)
Future work:
- Decrease overhead, especially for wrapping numbers in Tensors
- Handle general inter-type operations
- Extend to unary ops and reductions
- Use buffering for compute-bound operations on non-contiguous tensors
(pull in from CPUApplyUtils)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8919
Differential Revision: D8677600
Pulled By: colesbury
fbshipit-source-id: 61bc9cc2a36931dfd00eb7153501003fe0584afd
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
This makes the JIT tracer much more robust, by allowing it to record
dependencies on tensor sizes. For example, if you were to trace this
function
def fn(x):
return x.view(x.size(1), -1)
before this patch, then it would embed the actual value of x.size(1)
in the trace as a constant, making it very hard to have e.g. batch size
independent traces. Now, this will correctly record the dependency, and
will retrieve the size of x at every run.
* Use Index rather than Long for IntList, so floating-point types convertible to ints fail the parsing.
Basically, our unpackLong code works with floating-point types that are convertible to ints, but this isn't often what you want (because of truncation).
What you actually want is to convert to an index, which will usually find such issues.
I made this the minimal change I could because:
1) I didn't want to change unpackLong because the existing code call checkLong before unpackLong, so this should be a non-issue most of the time. And fixing this properly requires calling checkLong again, which will slow everything down.
2) An exception above is with IntList, which only checks that 1) it is a tuple or 2) it is a varargs tuple (i.e. torch.ones(1, 2, 3)).
* Fix bug.
* Don't conflict tensor and IntList bindings.
* Change function to be consistent between python 2 and 3.
* Check Index.
* Move IntList overloads in legacy new functions to below Tensor overloads.
* start at generic trilinear
* Implement einsum (fixes#1889)
This provides a simple implementation of einsum. It is built on
top of the work for computing bilinear (#6110).
It uses a naive left-to-right resolution at the moment.
Autograd is able to differentiate by itself.
The obvious unsupported feature is taking diagonals (einsum('ii->i',(a,)).
* add tests and docs
* fix flake8
* clean diff
* rebase on current master to resolve conflicting String wrapping
* clean up after rebase
* better commentary in einsum and sumproduct_pair
* don't say fixme if it's fixed and rename num_outputs to num_output_dims
* adapt python wrapper to use std::string instead of String to avoid typedef at::String
* typos and some vector to array conversion
* fix accidental python<->python3 change
* really fix bad rebase