For long running batch jobs, it is best to opt for logs that are too
spammy rather than not spammy enough. This lines up DEFAULT_LOGGING
with our current internal guidance at Meta.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119207
Approved by: https://github.com/bdhirsh
This PR is the start to enable the integrate pytorch distributed logs in Torch LOGs. We now already have one tag "distributed" for all distributed components but distributed is a very large component and we want to have some hierarchy and give users options to only turn on logs for certain submodules. So we also added tags starting with "dist_*" for each submodule. (This PR only adds some of them and we are going to add more down the road)
Related discussions can be found here: https://github.com/pytorch/pytorch/issues/113544
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116434
Approved by: https://github.com/awgu, https://github.com/wanchaol
Followup to https://github.com/pytorch/pytorch/pull/110325 - re-add the `report_all_guard_failures config` as a logging artifact `recompiles_verbose` with the following changes:
- evaluating the check must be wrapped with exception handling because subsequent code parts following the first failure may result in errors if evaluated (e.g. if a guard checks first for size, then tries to index - a guard failure due to insufficient size would result in an index error for the latter check).
- Adding a test for this case
Sample:
```python
import torch
def fn(x):
return torch.rand(x[-1], len(x))
opt_fn = torch.compile(fn)
opt_fn([4, 5, 6])
opt_fn([7, 8])
opt_fn([9])
```
Output (with `TORCH_LOGS="recompiles_verbose"`):
```bash
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] Recompiling function fn in /data/users/williamwen/pytorch/playground5.py:15
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] triggered by the following guard failure(s):
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] guard 0 failures:
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - len(L['x']) == 3
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - L['x'][0] == 4
[2023-11-15 16:13:26,741] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - L['x'][1] == 5
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] Recompiling function fn in /data/users/williamwen/pytorch/playground5.py:15
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] triggered by the following guard failure(s):
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] guard 0 failures:
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - len(L['x']) == 2
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG]
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] guard 1 failures:
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - len(L['x']) == 3
[2023-11-15 16:13:26,970] torch._dynamo.guards.__recompiles_verbose: [DEBUG] - L['x'][0] == 4
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113585
Approved by: https://github.com/jon-chuang, https://github.com/ezyang
When SymNode was refactored into its own module, this broke logging for this file, as the `dynamic` alias no longer covered it. This PR adds supports for an alias to point to multiple qualified module names. To drive the refactor, I renamed `log_alias_to_log_qname` to `log_alias_to_log_qnames` and then audited all use sites. I invite you to do so as well.
For good measure, I also add dynamic to dynamo, so that I always get dynamic logs when dynamo is enabled. Empirically this will be helpful because people keep sending me dynamo debug logs that don't have dynamic logs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113567
Approved by: https://github.com/Skylion007, https://github.com/lezcano, https://github.com/mlazos
ghstack dependencies: #113566
Previously, the way our logging system worked was that for every registered log, we would explicit set a log level for it. This would lead to unintuitive behavior when you had multiple overlapping loggers, e.g., from the module hierarchy. Specifically, if you had `TORCH_LOGS=torch`, this would not actually set the logging level for torch._dynamo to be INFO, because the default log level is WARNING, and because torch._dynamo has a registered logger 'dynamo' this would end up setting the level on torch._dynamo to be WARNING, thereby overriding the level of the parent module torch. The 'all' logger did not display this behavior, but only because it was special cased to directly modify the default log level of all other loggers (and so this would not work for any sub-hierarchies).
This PR refactors our code into a much more logical setup using NOTSET. Instead of setting the level of all loggers to some level, we instead default all loggers to NOTSET, unless a user explicitly requested logging from some logger. This means that if we have some logger which isn't explicitly mentioned by the user, parent loggers now have a chance to influence their log behavior. With this, I can eliminate the 'all' special case; 'all' really just means 'torch'. (I keep special handling directing all to torch for backwards compatibility, though arguably I can probably just turn all into an alias.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113566
Approved by: https://github.com/mlazos, https://github.com/Skylion007
This PR will cause logging.exception() to also dump the exception and stacktrace. Copied from 74723e1110/Lib/logging/__init__.py (L707-L711)
repro:
<details>
```python
import torch
import torch._inductor.config
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "runtime_error"
def fn(x, y):
return (x @ y).relu()
x, y = [torch.rand((16, 16), device='cuda') for _ in range (2)]
torch.compile(fn)(x, y)
```
run with TORCHDYNAMO_REPRO_AFTER=aot TORCHDYNAMO_REPRO_LEVEL=4
</details>
before:
```
...
[2023-10-12 14:18:52,902] torch._dynamo.debug_utils: [ERROR] While minifying the program in accuracy minification mode, ran into a runtime exception which is likely an unrelated issue. Skipping this graph.
```
now:
```
...
[2023-10-12 14:18:52,902] torch._dynamo.debug_utils: [ERROR] While minifying the program in accuracy minification mode, ran into a runtime exception which is likely an unrelated issue. Skipping this graph.
Traceback (most recent call last):
File "/data/users/dberard/scripts/relu_accuracy_issue.py", line 10, in <module>
torch.compile(fn)(x, y)
...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111164
Approved by: https://github.com/eellison
Now looks like:
```
[2023-09-08 06:04:48,532] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE STORE_ATTR foo [ConstantVariable(int), NNModule
Variable()]
[2023-09-08 06:04:48,532] [0/0] torch._dynamo.convert_frame: [INFO]
Restarting analysis due to _dynamo/variables/nn_module.py
:138 in convert_to_unspecialized
[2023-09-08 06:04:48,533] [0/0_1] torch._dynamo.symbolic_convert: [INFO] Step 1: torchdynamo start tracing f /data/users/ezyang/c/pytorch/a.py:6
[2023-09-08 06:04:48,533] [0/0_1] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line f /data/users/ezyang/c/pytorch/a.py:6
```
I'm happy to bikeshed the exact formatting of the attempt number if you
want.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108864
Approved by: https://github.com/mlazos, https://github.com/voznesenskym
All log messages that occur while running Dynamo compilation now have `[X/Y]` added to the beginning of their message. X represents the frame being compiled, while Y says which compilation of the frame. For example, if you are debugging a frame that is repeatedly recompiling, you can look for N/0, N/1, N/2, etc. for the same N. Here is what the logs look like as you transition from one frame to another:
<img width="1372" alt="image" src="https://github.com/pytorch/pytorch/assets/13564/4897e368-1e50-4807-b342-54e911bcf087">
To accurately get this prefix added to all messages, I had to expand the scope of the `tracing` context manager. Its scope now coincides with `log_compilation_event`. To do this, I had to populate fake mode lazily in the TracingContext, since it isn't created until later, inside the OutputGraph.
This subsumes the previous X.Y logging that was solely for dynamic shapes.
Unfortunately I had to reindent some stuff. Review the diff with whitespace off.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107530
Approved by: https://github.com/anijain2305
ghstack dependencies: #107505, #107516
This adds some utilities for conveniently working with fast combined CapturedTraceback from Python. The main goal of these utilities is to make it easier for people to use CapturedTraceback as a drop-in replacement for `traceback.extract_stack`, which is 20x slower than CapturedTraceback.
I port symbolic shapes to use the new CapturedTraceback code, to validate that the APIs work and are useful.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107358
Approved by: https://github.com/zdevito, https://github.com/albanD
ghstack dependencies: #107438
Since Python 3.11 bytecode contains endline and column information, for each bytecode, we attribute the source code corresponding to the bytecode in a more accurate way. For example, we can highlight a function call in a series of nested function calls, or highlight a function call spanning multiple lines.
Sample:
```python
import torch
import torch._dynamo
from functorch.experimental.control_flow import cond
def h(x):
return x * 5
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def f(pred, x):
x = h(
h(h(x))
)
x = x[1:][:2]
torch._dynamo.graph_break()
x = cond(pred, true_fn, false_fn, [x])
opt_f = torch.compile(f, backend="eager")
opt_f(torch.tensor(True), torch.randn(3, 3, 3, 3))
```
Output:
```
$ TORCH_LOGS="trace_call" python playground9.py
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^
TRACE FX call mul from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^^^^
TRACE FX call mul_1 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:15
x = h(
~^
h(h(x))
^^^^^^^
)
^
TRACE FX call mul_2 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE FX call getitem from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~^^^^
TRACE FX call getitem_1 from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~~~~~^^^^
TRACE inlined call true_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from true_fn /scratch/williamwen/work/pytorch/playground9.py:9 (inline depth: 1)
return x * 2
~~^~~
TRACE inlined call false_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from false_fn /scratch/williamwen/work/pytorch/playground9.py:12 (inline depth: 1)
return x * 3
~~^~~
TRACE FX call cond from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104676
Approved by: https://github.com/ezyang
This makes it easier to exclude multi-line messages using single line
grepping. If your screen is wide enough this should not be a big
problem.
Example of what it looks like:
```
[2023-07-10 20:11:30,529] torch._dynamo.convert_frame.__guards: [DEBUG] GUARDS:
[2023-07-10 20:11:30,529] torch._dynamo.convert_frame.__guards: [DEBUG] hasattr(L['x'], '_dynamo_dynamic_indices') == False
[2023-07-10 20:11:30,529] torch._dynamo.convert_frame.__guards: [DEBUG] ___is_grad_enabled()
[2023-07-10 20:11:30,529] torch._dynamo.convert_frame.__guards: [DEBUG] not ___are_deterministic_algorithms_enabled()
[2023-07-10 20:11:30,529] torch._dynamo.convert_frame.__guards: [DEBUG] utils_device.CURRENT_DEVICE == None
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104932
Approved by: https://github.com/mlazos, https://github.com/albanD
Prototype for the feature request:
>When working on a codebase that is unfamiliar to you, it can be helpful to single step through all of the code to see what is getting executed, what conditional branches are taken, and where indirect function jumps go. Model x-ray uses dynamo to give you a single step log of every source code line that does something relevant (i.e., a Tensor operation)
Dynamo logs to the ~`starts_line`~ `trace_source` logging artifact at the start of tracing new bytecode with a new line. It logs the line of source code associated with that bytecode.
~~Dynamo logs to the `graph_source` logging when a FX GraphModule is constructed. For each node in the graph, it logs the location of the original source code associated with that node.~~
Development notes: https://docs.google.com/document/d/1LjFeHzCgDDt535QUq5HydcQs56d7jWl5RvW8TLZN19g/edit?usp=sharing
Since the draft, we removed the `graph_source` logging artifact since printing the code of `GraphModule`s already displays the original source.
Sample:
```python
import torch
from functorch.experimental.control_flow import cond
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def f_cond(pred, x):
return cond(pred, true_fn, false_fn, [x])
def f_outer(pred, x):
y = f_cond(pred, x)
if x.sum() > 0:
x = x * 2
else:
x = x * 3
return x, y
opt_f_cond = torch.compile(f_outer, backend="eager")
opt_f_cond(torch.tensor(True), torch.randn(3, 3))
```
Logs:
```shell
$ TORCH_LOGS="trace_source" python playground8.py
TRACE starts_line f_outer playground8.py:54
def f_outer(pred, x):
TRACE starts_line f_outer playground8.py:55
y = f_cond(pred, x)
TRACE starts_line f_cond playground8.py:51 (inline depth: 1)
def f_cond(pred, x):
TRACE starts_line f_cond playground8.py:52 (inline depth: 1)
return cond(pred, true_fn, false_fn, [x])
TRACE starts_line true_fn playground8.py:45 (inline depth: 2)
def true_fn(x):
TRACE starts_line true_fn playground8.py:46 (inline depth: 2)
return x * 2
TRACE starts_line false_fn playground8.py:48 (inline depth: 2)
def false_fn(x):
TRACE starts_line false_fn playground8.py:49 (inline depth: 2)
return x * 3
TRACE starts_line f_outer playground8.py:56
if x.sum() > 0:
TRACE starts_line <resume in f_outer> playground8.py:56
if x.sum() > 0:
TRACE starts_line <resume in f_outer> playground8.py:57
x = x * 2
TRACE starts_line <resume in f_outer> playground8.py:60
return x, y
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104013
Approved by: https://github.com/ezyang
Removes a check which would sometimes allow `off_by_default` artifacts to be logged if logged at a higher level.
This change will only allow artifact messages to be displayed if the artifact is enabled, regardless of level.
closes#99144
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99260
Approved by: https://github.com/lezcano