Commit Graph

64 Commits

Author SHA1 Message Date
Xuehai Pan
4cc8b60d1b [BE][1/16] fix typos in torch/ (#156311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156311
Approved by: https://github.com/albanD
2025-07-09 11:02:22 +00:00
James Wu
be56a8d7ac Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 23:57:17 +00:00
PyTorch MergeBot
ae1094b72b Revert "[WIP] Automatically load and save dynamo entries via caching_precompile (#155913)"
This reverts commit e466dab164.

Reverted https://github.com/pytorch/pytorch/pull/155913 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail a test in trunk ([comment](https://github.com/pytorch/pytorch/pull/155913#issuecomment-3045914878))
2025-07-07 16:53:35 +00:00
James Wu
e466dab164 [WIP] Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 11:56:30 +00:00
Xuehai Pan
3fd84a8592 [BE][PYFMT] migrate PYFMT for torch/[a-c]*/ to ruff format (#144554)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144554
Approved by: https://github.com/soulitzer
2025-07-03 18:56:07 +00:00
Edward Z. Yang
17eb649d55 Implement guard collectives (optimized version) (#156562)
This is a remix of https://github.com/pytorch/pytorch/pull/155558

Instead of mediating guard collective via a config option, in this one it's done via a `set_stance` like API. The motivation is that checking for the config value on entry on torch.compile is apparently quite expensive, according to functorch_maml_omniglot. So this makes it a bit cheaper.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156562
Approved by: https://github.com/Microve
2025-06-24 04:59:49 +00:00
Animesh Jain
fab85fc5f9 [compile][hierarchical compilation] Release nested_compile_region API (#156449)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156449
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-06-21 15:14:59 +00:00
Animesh Jain
54976bca10 [dynamo] Provide helper functions for guard filter hook (#155083)
Collection of ready-made guard filters. One issue is that they are not composable - `filter1(filter2(guard))`. On the other hand, they are easy to use.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155083
Approved by: https://github.com/zhxchen17, https://github.com/jansel
2025-06-15 17:49:36 +00:00
James Wu
3819584f12 [precompile] Implement PrecompileContext for recording precompile artifacts, integrate with CompilePackage (#154415)
This PR implements a basic interface and test for PrecompileContext, a special CacheArtifactManager specifically designed for precompile. The job of a PrecompileContext is to record things precompile needs as torch is compiling,  dump it all into bytes, and then stitch it back together into a cache of callables.

## Why use CacheArtifactManager?
Precompile needs a way to record various serializable data as torch is compiling. CacheArtifactManager already does this today pretty well, handling a lot of serialization and cache information. So we're reusing a bunch of that infrastructure directly.

## How is it different from CacheArtifactManager?
Unlike regular CacheArtifactManager, PrecompileContext needs to be able to take the recorded artifacts and stitch them together after deserialization, to create a single working callable.
Since PrecompileContext doesn't need the cache keys, the "key" field of PrecompileArtifacts can be used for metadata relating to how to stitch the individual functions being compiled together into a full callable. For example, on a given dynamo compile, if there are multiple functions (via graph breaks or recompiles) being compiled, MegaCache would organize it like so:

![image](https://github.com/user-attachments/assets/49a0a75b-1e7f-4d96-8d81-6769fe5a53ca)

Whereas we'd visualize PrecompileContext's result like so:

![image](https://github.com/user-attachments/assets/fcc0dd4e-dfbf-4b13-9c08-2e99b373180b)

For now, we just handle eager mode; in the diff above, I'll hook up the other backend artifacts from PrecompileContext.

After this PR, precompile consists of three main interfaces:

### CompilePackage
- Everything needed to run one torch.compile'd function (including graph breaks)
- `__init__(fn, cache_entry)` Initializes with a DynamoCacheEntry
- `install(backends)` load precompile artifacts into function's dynamo state with a dictionary of backends
- `cache_entry()` return a serializable cache entry to save

### DynamoStore
- Responsible for tracking CompilePackages on disk (and/or in memory)
- `load_package(path)`: load a package given a torch compiled function and a path to the cache artifact
- `save_package(package, path): Save a CompiledPackage to a path. Calls PrecompileContext to grab backend data
- `record_package(package)`: Record a package to PrecompileContext (for global serialization/deserialization)

### PrecompileContext
- Overarching context for serializing and deserializing precompile artifacts. Supports **global** and **local** setups.
- `serialize()`: (Global) serializes all artifacts in PrecompileContext into bytes
- `populate_caches(bytes)`: (Global) takes serialized bytes and puts them into DynamoStore (TODO)
- `serialize_artifact_by_key(key)`: (Local) serialize a single artifact by its cache key

<img width="1455" alt="image" src="https://github.com/user-attachments/assets/99b61330-7607-4763-bdbc-85b366e82cdd" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154415
Approved by: https://github.com/zhxchen17
ghstack dependencies: #155118
2025-06-13 14:11:24 +00:00
bobrenjc93
ea5b9eca74 Combine sticky pgo key with job id (#154863)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154863
Approved by: https://github.com/Mingming-Ding
2025-06-03 07:58:38 +00:00
bobrenjc93
984b1a80e3 [ez] add docs for *eager_then_compile stances (#154818)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154818
Approved by: https://github.com/williamwen42
ghstack dependencies: #154802, #154826, #154822, #154823, #154805
2025-06-02 19:04:35 +00:00
bobrenjc93
d865b784e4 Support unbacked whitelist (#154295)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154295
Approved by: https://github.com/angelayi
2025-05-28 23:01:22 +00:00
bobrenjc93
2560c1f3f0 add sticky cache pgo (#154418)
It's a reland of https://github.com/pytorch/pytorch/pull/154394 that hit some mergebot bug

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154418
Approved by: https://github.com/malfet
2025-05-27 16:40:18 +00:00
Tomasz Bohutyn
bb7e30c165 [MegaCache] Make MegaCache generic to allow external plugins registration (#152977)
Implements #152976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152977
Approved by: https://github.com/oulgen
2025-05-21 18:18:47 +00:00
Oguz Ulgen
f9bdfe90ae [MegaCache] Return None on no compilation (#151921)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151921
Approved by: https://github.com/jamesjwu
2025-04-23 04:32:06 +00:00
Oguz Ulgen
8404c09b15 [MegaCache] Rename the PGO artifact when used between different jobs (#151482)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151482
Approved by: https://github.com/bobrenjc93, https://github.com/jamesjwu
2025-04-17 17:09:29 +00:00
Oguz Ulgen
3cf0e2d8ec Add inductor standalone_compile API (#150670)
This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.

```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
2025-04-15 23:38:15 +00:00
PyTorch MergeBot
74f6bc28a7 Revert "Add inductor standalone_compile API (#150670)"
This reverts commit c9aef50898.

Reverted https://github.com/pytorch/pytorch/pull/150670 on behalf of https://github.com/Camyll due to breaking internal builds with torch module not found error ([comment](https://github.com/pytorch/pytorch/pull/150670#issuecomment-2806975267))
2025-04-15 17:35:59 +00:00
Oguz Ulgen
c9aef50898 Add inductor standalone_compile API (#150670)
This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.

```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
2025-04-14 22:00:09 +00:00
PyTorch MergeBot
24b3ab9255 Revert "Add inductor standalone_compile API (#150670)"
This reverts commit bbc5fe8504.

Reverted https://github.com/pytorch/pytorch/pull/150670 on behalf of https://github.com/albanD due to Broke profiler test ([comment](https://github.com/pytorch/pytorch/pull/150670#issuecomment-2802067144))
2025-04-14 15:22:33 +00:00
Oguz Ulgen
bbc5fe8504 Add inductor standalone_compile API (#150670)
This PR adds standalone_compile API that does precompilation via caching to support vLLM use case in the short term while we work on the longer term precompilation solution.

```
standalone_compile(gm, example_inputs, options) -> CompiledArtifact
CompiledArtifact.save(path, format: binary|unpacked = binary)
CompiledArtifact.load(path, format: binary|unpacked = binary)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150670
Approved by: https://github.com/jamesjwu, https://github.com/zou3519
2025-04-14 07:07:10 +00:00
William Wen
25eff6e991 [dynamo] add reason field to torch.compiler.disable (#150341)
Implements https://github.com/pytorch/pytorch/issues/146445

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150341
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-04-02 04:26:48 +00:00
bobrenjc93
2dcdb4ba78 [ez] include config as part of __all__ in torch.compiler (#148978)
Right now we are susceptive to a race condition where if the torch.compiler.config is not implicitly import via dynamo/builder.py, we will throw an error when trying to set compiler configs. This fixes it by including config in `__all__`.

Previous
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
>>> torch.compiler.config.dynamic_sources =
"L['kwargs']['float_features']"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
```

Now
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148978
Approved by: https://github.com/bdhirsh, https://github.com/laithsakka
2025-03-11 21:58:38 +00:00
Oguz Ulgen
57addfcd58 Significantly speed up save_cache_artifacts (#148227)
While using save_cache_artifacts on internal workloads, we have noticed that repeatedly calling this function after every batch is incredibly expensive. This PR significantly speeds up this function call by opting out of pickle and redesigning serialization algorithm.

Essentially what we want is to be able to call serialize many times without incurring costs from scratch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148227
Approved by: https://github.com/jamesjwu
ghstack dependencies: #148226
2025-03-03 17:28:41 +00:00
bobrenjc93
4708cfdbd9 Support whitelist of dynamic sources (#147979)
This PR introduces the ability to whitelist sources as dynamic. This is particularly useful for large models with graph breaks, as you can keep the dynamism across graph breaks since source names stay consistent. Additionally you can use this to mark ints as dynamic.

NB: I intentionally didn't complicate the interface by supporting specification of per dimension dynamism. There is virtue in keeping true to the standard way of representing sources (eg. L['x']). If we find in practice that we need more more fine grained control, we can explore further affordances at that time.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147979
Approved by: https://github.com/Mingming-Ding
2025-02-28 15:43:14 +00:00
Aaron Orenstein
db4ce78d46 PEP585: More UP006 fixes (#146392)
This should be the final PR before we can enable RUFF UP006.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146392
Approved by: https://github.com/justinchuby, https://github.com/albanD, https://github.com/Skylion007
2025-02-20 06:18:13 +00:00
Nikita Shulga
95ff9f0340 [Doc] Add period at the end of the sentence (#145384)
Test plan: https://docs-preview.pytorch.org/pytorch/pytorch/145384/generated/torch.compiler.disable.html#torch-compiler-disable
Fixes https://github.com/pytorch/pytorch/issues/145365

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145384
Approved by: https://github.com/huydhn, https://github.com/svekars, https://github.com/kit1980
2025-01-22 19:56:31 +00:00
Aaron Orenstein
805c4b597a PEP585 update - torch/_higher_order_ops torch/_subclasses torch/backends torch/compiler torch/cuda torch/masked torch/mtia torch/nested (#145202)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145202
Approved by: https://github.com/bobrenjc93
2025-01-20 22:37:26 +00:00
Aaron Orenstein
a79100ab11 PEP585 update - torch/_dynamo (#145105)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145105
Approved by: https://github.com/bobrenjc93
2025-01-18 20:47:11 +00:00
James Wu
6e77d7cac5 Add AOTAutogradCache support for cache hot loading APIs (#144499)
This diff adds AOTAutogradCache support to the mega cache.

Differential Revision: [D67991059](https://our.internmc.facebook.com/intern/diff/D67991059/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D67991059/)!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144499
Approved by: https://github.com/oulgen
2025-01-13 07:07:18 +00:00
Oguz Ulgen
9ee242213b [RFC] Introduce cache hot loading APIs (a.k.a. "Mega-cache") (#143341)
This PR essentially introduces two new APIs
* torch.compiler.save_cache_artifacts
* torch.compiler.load_cache_artifacts

which aim to create a mega cache experience where the user can start collecting cache artifacts, and later call the save API to fetch them. In the next attempt, the user can "hot load" the cache artifacts via the load function.

This bundling approach reduces the need to rely on porting individual files one by one, or relying on many network requests.

Note that these APIs CANNOT log to structured logging as these functions will be called before and after compilation, as opposed to during compilation. Due to this limitation, the API returns a struct that the user can log with.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143341
Approved by: https://github.com/jansel
2025-01-07 23:13:24 +00:00
yijun-lee
d4609af1ca Propagate callable parameter types using ParamSpec (#142306) (#144047)
Fixes #142306

This PR includes typing improvements and refactoring for the following files:
- __init__.py
- decorators.py
- _ops.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144047
Approved by: https://github.com/XuehaiPan, https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
Co-authored-by: Xuehai Pan <XuehaiPan@pku.edu.cn>
2025-01-06 16:16:18 +00:00
Yidi Wu
1e201422ed [export] add is_exporting flag (#142425)
We added an is_export flag under torch.compiler.is_exporting. This comes handy when we try to do some special logic in user-level and system-level (e.g. in upper of the stack).

In increasing-scope:
- `_is_fx_tracing` is set to True when we use under symbolic_trace or make_fx.
- `is_exporting` is set to True when we're doing strict or non-strict export, which internally has a step that calls make_fx and set _is_fx_tracing to be True.
- `is_compiling` is set to True when we're either doing strict, non-strict export or torch.compile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142425
Approved by: https://github.com/avikchaudhuri
2024-12-18 21:36:28 +00:00
Oguz Ulgen
28d8297712 Migrate compiler config to Config (#143152)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143152
Approved by: https://github.com/ezyang
ghstack dependencies: #143229
2024-12-14 07:38:25 +00:00
PyTorch MergeBot
e87f07d3b8 Revert "Migrate compiler config to Config (#143152)"
This reverts commit 1ebdfd5605.

Reverted https://github.com/pytorch/pytorch/pull/143152 on behalf of https://github.com/oulgen due to lint failure ([comment](https://github.com/pytorch/pytorch/pull/143152#issuecomment-2542342073))
2024-12-13 20:55:14 +00:00
Oguz Ulgen
1ebdfd5605 Migrate compiler config to Config (#143152)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143152
Approved by: https://github.com/ezyang
ghstack dependencies: #143150, #143151
2024-12-13 19:29:07 +00:00
Oguz Ulgen
0f6bfc58a2 Introduce remote cache key prefix to break cache (#142148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142148
Approved by: https://github.com/jamesjwu, https://github.com/ezyang
2024-12-10 00:35:50 +00:00
Animesh Jain
fb529c2c84 [dynamo] skip_guard_eval_unsafe stance for power users (#140251)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140251
Approved by: https://github.com/jansel
ghstack dependencies: #140223, #140250
2024-11-21 06:28:58 +00:00
Edward Z. Yang
585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00
PyTorch MergeBot
92d7f29e59 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit f6be44c74e.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to more fbcode errors ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452985581))
2024-11-02 13:11:04 +00:00
Edward Z. Yang
f6be44c74e Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-02 11:50:11 +00:00
PyTorch MergeBot
8d1eaa3da6 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit a6630bcf87.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to internal code triggers import cycle ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452833882))
2024-11-02 03:38:15 +00:00
Edward Z. Yang
a6630bcf87 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-01 21:43:25 +00:00
William Wen
73a153b931 [dynamo] add compiler.set_stance raw function call test and doc example (#138276)
Followup to https://github.com/pytorch/pytorch/pull/137504#issuecomment-2420107198

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138276
Approved by: https://github.com/anijain2305, https://github.com/jansel
2024-10-18 02:54:22 +00:00
William Wen
5b7f4767ff Fix https://github.com/pytorch/pytorch/issues/138062 (#138137)
Fixes https://github.com/pytorch/pytorch/issues/138062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138137
Approved by: https://github.com/mlazos
2024-10-17 07:12:15 +00:00
William Wen
4c8718d8e7 [dynamo] add torch.compiler.set_stance (#137504)
Attempt # 2 at https://github.com/pytorch/pytorch/pull/132926 to implement https://github.com/pytorch/pytorch/issues/123771.

Implement a new `torch.compiler.set_stance` function that can force `torch.compile` regions to run eagerly.

See added tests for usage examples.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137504
Approved by: https://github.com/yf225, https://github.com/jansel
2024-10-16 16:18:25 +00:00
Jane Xu
eaec72d1e6 Link directly to new Custom Ops Landing Page (#137933)
e.g., click on first link in https://docs-preview.pytorch.org/pytorch/pytorch/137933/library.html#testing-custom-ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137933
Approved by: https://github.com/zou3519
2024-10-15 21:18:21 +00:00
Xuehai Pan
e09324e7da [dynamo] simplify polyfill registration for builtins.all and builtins.any (#133769)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133769
Approved by: https://github.com/jansel
2024-08-29 20:56:16 +00:00
Xuehai Pan
c95ddd4bf2 [dynamo] ensure polyfill function has the same signature as the original function in substitute_in_graph (#133813)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133813
Approved by: https://github.com/jansel
2024-08-22 16:38:06 +00:00
Xuehai Pan
022cd7c9aa [RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.

5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)

Example:

```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...

>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
...     for i, item in enumerate(sequence):
...         if item is x or item == x:
...             return i
...     raise ValueError("sequence.index(x): x not in sequence")

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
2024-08-21 06:36:41 +00:00