Commit Graph

321 Commits

Author SHA1 Message Date
egienvalue
8461e7ed9e Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks. Since we added a fake device backend, it is mutual exclusive to other backends. Tests will be skipped if TEST_CUDA or TEST_ROCM is true.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-26 16:17:54 +00:00
Shan19900305
8d12ba9acf add methods for open device in PackedSequence module. (#124923)
1) add is_{custom_device_name}() and {custom_device_name}() for open device register;
2) fix open device failed testcases.

@ezyang  @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124923
Approved by: https://github.com/ezyang
2024-04-26 15:26:20 +00:00
PyTorch MergeBot
4a1299cc0e Revert "Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)"
This reverts commit 355dc34f86.

Reverted https://github.com/pytorch/pytorch/pull/123614 on behalf of https://github.com/jeffdaily due to this PR broke ROCm with message RuntimeError: Cannot have MTIA with other devices ([comment](https://github.com/pytorch/pytorch/pull/123612#issuecomment-2077649762))
2024-04-25 16:06:46 +00:00
egienvalue
355dc34f86 Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks.

Differential Revision: [D56443358](https://our.internmc.facebook.com/intern/diff/D56443358)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-24 20:51:20 +00:00
Ashwin Hari
5f5778476a rename ort to maia (#123265)
Fixes #123264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123265
Approved by: https://github.com/albanD
2024-04-23 00:33:25 +00:00
PyTorch MergeBot
52da03edeb Revert "Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)"
This reverts commit b6f0159db0.

Reverted https://github.com/pytorch/pytorch/pull/123614 on behalf of https://github.com/jeffdaily due to This broke ROCm. see test_overrides.py ([comment](https://github.com/pytorch/pytorch/pull/123611#issuecomment-2067363780))
2024-04-19 22:44:26 +00:00
egienvalue
b6f0159db0 Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks.
@exported-using-ghexport

Differential Revision: [D55902506](https://our.internmc.facebook.com/intern/diff/D55902506/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-18 17:40:13 +00:00
Yuanhao Ji
c797fbc4e1 Enable UFMT on test/cpp_api_parity, test/cpp_extensions, test/create_dummy_torchscript_model.py, test/custom_backend, test/custom_operator (#123518)
Partially addresses #123062

Ran lintrunner on:

- `test/cpp_api_parity`
- `test/cpp_extensions`
- `test/create_dummy_torchscript_model.py`
- `test/custom_backend`
- `test/custom_operator`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123518
Approved by: https://github.com/huydhn
2024-04-08 20:18:42 +00:00
chentianyi16
83ad8e01b1 fix the problem that cpu_fallback for aten::triu_indices on custom device crashed (#121306)
Fixes #121289

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121306
Approved by: https://github.com/ezyang
2024-03-26 01:29:45 +00:00
PyTorch MergeBot
db506762d1 Revert "Change ATEN generator argument type to const std::optional<Generator>& (#120076)"
This reverts commit a52b4e2257.

Reverted https://github.com/pytorch/pytorch/pull/120076 on behalf of https://github.com/atalman due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/120076#issuecomment-2018680656))
2024-03-25 18:52:05 +00:00
cyy
a52b4e2257 Change ATEN generator argument type to const std::optional<Generator>& (#120076)
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
2024-03-24 02:12:08 +00:00
PyTorch MergeBot
02fee6caec Revert "Change ATEN generator argument type to const std::optional<Generator>& (#120076)"
This reverts commit ecbe82b9ce.

Reverted https://github.com/pytorch/pytorch/pull/120076 on behalf of https://github.com/jeanschmidt due to Reverting in order to check if this will fix XLA trunk jobs ([comment](https://github.com/pytorch/pytorch/pull/120076#issuecomment-2015272644))
2024-03-22 14:53:45 +00:00
cyy
ecbe82b9ce Change ATEN generator argument type to const std::optional<Generator>& (#120076)
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
2024-03-22 03:49:31 +00:00
Shan19900305
6662627c89 Add APIs for custom device using TensorIteratorBase. (#120792)
1) add operand and get_dim_names API;
2) set will_resize to true when output tensor is undefined;
3) add abs_stub for dummy device and calculate on cpu device;
4) support dummy device copy with stride;
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120792
Approved by: https://github.com/ezyang
2024-03-20 03:51:09 +00:00
PyTorch MergeBot
c0996866f4 Revert "Change ATEN generator argument type to const std::optional<Generator>& (#120076)"
This reverts commit 4305c64fea.

Reverted https://github.com/pytorch/pytorch/pull/120076 on behalf of https://github.com/izaitsevfb due to breaking internal builds(take 3) ([comment](https://github.com/pytorch/pytorch/pull/120076#issuecomment-1986338164))
2024-03-08 20:01:03 +00:00
cyy
4305c64fea Change ATEN generator argument type to const std::optional<Generator>& (#120076)
This PR proposes to use std::optional<Generator>& for underlying functions to avoid unnecessary copy and move operations. The torchgen code was changed to generate the new type.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120076
Approved by: https://github.com/malfet
2024-03-07 09:52:21 +00:00
Chen_Liqing
291ce86a6c Modify StorageImplCreateHelper (#118459)
I want to use tensor.untyped_storage()[a:b] for ``PrivateUse1`` backend but fail. The code will go into ``THPStorage_get``:
bb6eba189f/torch/csrc/Storage.cpp (L525-L540)

Here ``torch`` will create a new ``c10::StorageImpl`` but not consider about ``PrivateUse1`` backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118459
Approved by: https://github.com/albanD
2024-03-07 06:26:55 +00:00
cyy
507611f9ae [CUDACachingAllocator] Turn Allocator::allocate into non-const (#120969)
Ideally, the method should be non-const since it changes the allocator state. Some const_casts are also removed in the way.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120969
Approved by: https://github.com/albanD
2024-03-05 09:53:05 +00:00
Shan19900305
6c3600d008 Enable optional tensorList fallback to cpu. (#119273)
add optional tensorList fallback to cpu.
Add testcases and old pr is: https://github.com/pytorch/pytorch/pull/106449

@bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119273
Approved by: https://github.com/bdhirsh
2024-02-07 03:54:13 +00:00
Edward Yang
b4a35632f9 Add function to materialize COW storages (#117053)
Summary: From Kurt Mohler, see https://github.com/pytorch/pytorch/pull/113396 (manually imported due to ghimport problems)

Test Plan: sandcastle, OSS CI

Differential Revision: D52610522

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117053
Approved by: https://github.com/malfet, https://github.com/kurtamohler
2024-01-10 15:34:16 +00:00
PyTorch MergeBot
f36d09fcb7 Revert "Add function to materialize COW storages (#113396)"
This reverts commit e2f090086b.

Reverted https://github.com/pytorch/pytorch/pull/113396 on behalf of https://github.com/DanilBaibak due to Break internal build ([comment](https://github.com/pytorch/pytorch/pull/113396#issuecomment-1818769090))
2023-11-20 10:26:01 +00:00
Kurt Mohler
e2f090086b Add function to materialize COW storages (#113396)
Part of #109833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113396
Approved by: https://github.com/ezyang
2023-11-17 01:58:51 +00:00
feifan
c73da67d46 new_qtensor support privateuseone allocator. (#111464)
I want to create a quant tensor through `PerTensorAffineQuantizer`. But I found that it will throw error because of the lake of judgment for PrivateUse1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111464
Approved by: https://github.com/ezyang
2023-11-01 05:16:58 +00:00
FFFrog
68cb854d73 Fix CPUFallback Mechinasm on TensorList Type (#105209)
Fixes #104965

Currently, the cpufallback mechinasm lack the code logic of TensorList, so some operators like _foreach_add_/_foreach_add don`t work well.

cc  @bdhirsh

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105209
Approved by: https://github.com/bdhirsh
2023-08-05 15:38:30 +00:00
FFFrog
ae4b2d272f Fix the Test of duplicate registration on genarator (#106536)
The duplicate registration test case shown in the figure below has always failed.
3d165dc3f3/test/test_cpp_extensions_open_device_registration.py (L171-L173)

3d165dc3f3/aten/src/ATen/core/GeneratorForPrivateuseone.h (L36-L37)

Because there is a static variable in the ```self.module.register_generator()``` function, it will only be initialized once.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106536
Approved by: https://github.com/albanD
2023-08-04 16:09:40 +00:00
Brian Hirsh
4a549dd57a AOTAutograd: correctness fix when tracing custom autograd functions that alias inputs (#102992)
Fixes https://github.com/pytorch/pytorch/issues/102970. See the comment [here](https://github.com/pytorch/pytorch/issues/102970#issuecomment-1577223773) for details.

We normally treat "outputs that alias inputs" specially in AOTAutograd, by replaying the views at runtime, instead of baking them into the graph. For views that are part of custom autograd functions though, we can't do that view-replay, since it will clobber the backwards function that the user specified in their custom autograd.Function.

Right now in this PR, I distinguish between "aliased inputs that are normal views" vs. "aliased inputs that are views that came from an autograd.Function call" by checking the outputs `.grad_fn` field, to see if it inherits from our custom CBackward function class. Then I added a new `OutputType` enum value, that we effectively treat the "normal" way (the same way that we treat ordinary, non-aliased outputs). The new enum val is mostly for debugging - so we can print it and know that our graph had custom autograd.Function aliased outputs in it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102992
Approved by: https://github.com/ezyang, https://github.com/zou3519
2023-07-31 19:02:12 +00:00
shibo19
7047d132fd add context support for custom device (#105056)
Fixes #ISSUE_NUMBER
as the title, add context support for custom device and testcase.
And in the future, we may want to refactor these hooks for different device to unify the APIs, would you agree my
idea? @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105056
Approved by: https://github.com/albanD
2023-07-29 12:56:03 +00:00
kshitij12345
47894bb165 [functorch] disable C++ Function under functorch transforms (#103957)
Fixes https://github.com/pytorch/pytorch/issues/102720

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103957
Approved by: https://github.com/zou3519
2023-06-23 11:01:44 +00:00
Bug Hunter Yan
b7777c812e extend serialization for tensor metadata (#99808)
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.

In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang, https://github.com/huydhn
2023-06-14 01:43:21 +00:00
Li-Huai (Allan) Lin
3c0072e7c0 [MPS] Prerequisite for MPS C++ extension (#102483)
in order to add mps kernels to torchvision codebase, we need to expose mps headers and allow objc++ files used in extensions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102483
Approved by: https://github.com/malfet
2023-06-07 17:28:31 +00:00
Bug Hunter Yan
0c470b17e3 Extend storage create for custom storageImpl (#100237)
Fixes #ISSUE_NUMBER

For the scenario where users inherit storageimpl to implement their own subclasses, the current storage creation method cannot correctly create storage objects.

Refer to the registration method of Allocator to expand the creation method of storageimpl, users can register their own custom storageimpl creation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100237
Approved by: https://github.com/albanD
2023-05-17 04:30:13 +00:00
PyTorch MergeBot
1272cd73da Revert "extend serialization for tensor metadata (#99808)"
This reverts commit 4b9bc6f2a6.

Reverted https://github.com/pytorch/pytorch/pull/99808 on behalf of https://github.com/izaitsevfb due to Breaks internal builds: ld.lld: error: undefined symbol: torch::jit::GetBackendMetaSerialization() ([comment](https://github.com/pytorch/pytorch/pull/99808#issuecomment-1550071656))
2023-05-16 17:22:25 +00:00
fakeYan
4b9bc6f2a6 extend serialization for tensor metadata (#99808)
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.

In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
2023-05-15 19:45:34 +00:00
zhi.cai
bf50180b4a enable dispatch stub for backend PrivateUse1 (#99611)
When expanding the new backend of pytorch in the form of out ot tree, Privateuse1 will be reused. So we also need to support PrivateUse1 in the dispatch stub module

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99611
Approved by: https://github.com/ezyang
2023-05-12 04:02:12 +00:00
XDaoHong
a723f1f2b9 fix _privateuse1_tag problem (#100632)
Fix _privateuse1_tag bug in torch/serialization.py
Add device_index after device_type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100632
Approved by: https://github.com/ezyang
2023-05-10 09:53:19 +00:00
PyTorch MergeBot
5c14eea1de Revert "extend serialization for tensor metadata (#99808)"
This reverts commit 73dd6f04c9.

Reverted https://github.com/pytorch/pytorch/pull/99808 on behalf of https://github.com/atalman due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/99808#issuecomment-1536823538))
2023-05-05 21:55:52 +00:00
Bug Hunter Yan
73dd6f04c9 extend serialization for tensor metadata (#99808)
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.

In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
2023-05-04 20:32:11 +00:00
wbigat
b02aa5e71d [Feature] storage resize_ support custom device. (#99882)
Fixes #99326

Support storage resize_ for custom device, by calling dispatched tensor operations.

@ezyang  this pr is another case  that was brought up in issue #99326,  please take a moment to review this change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99882
Approved by: https://github.com/ezyang
2023-04-27 20:18:35 +00:00
wbigat
ee5f09ab80 [Feature] storage pin memory support custom device. (#99712)
Fixes #99326

Support storage pin_memory and is_pinned for custom device, by calling dispatched tensor operations.

@ezyang  this pr is what we have discussed in issue #99326, would you please take a moment to review it, thanks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99712
Approved by: https://github.com/ezyang
2023-04-21 18:31:01 +00:00
Animesh Jain
971df458db Reland of "Python binding to set/get CUDA rng state offset" (#99565)
Why?
* To reduce the latency of hot path in https://github.com/pytorch/pytorch/pull/97377

Concern - I had to add `set_offset` in all instances of `GeneratorImpl`. I don't know if there is a better way.

~~~~
import torch
torch.cuda.manual_seed(123)
print(torch.cuda.get_rng_state())
torch.cuda.set_rng_state_offset(40)
print(torch.cuda.get_rng_state())

tensor([123,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0], dtype=torch.uint8)
tensor([123,   0,   0,   0,   0,   0,   0,   0,  40,   0,   0,   0,   0,   0,
          0,   0], dtype=torch.uint8)
~~~~

Reland of https://github.com/pytorch/pytorch/pull/98965

(cherry picked from commit 8214fe07e8)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99565
Approved by: https://github.com/anijain2305
2023-04-20 15:42:25 +00:00
PyTorch MergeBot
bb2cd4a107 Revert "Python binding to set/get CUDA rng state offset (#98965)"
This reverts commit 8214fe07e8.

Reverted https://github.com/pytorch/pytorch/pull/98965 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-04-19 11:23:32 +00:00
Animesh Jain
8214fe07e8 Python binding to set/get CUDA rng state offset (#98965)
Why?
* To reduce the latency of hot path in https://github.com/pytorch/pytorch/pull/97377

Concern - I had to add `set_offset` in all instances of `GeneratorImpl`. I don't know if there is a better way.

~~~~
import torch
torch.cuda.manual_seed(123)
print(torch.cuda.get_rng_state())
torch.cuda.set_rng_state_offset(40)
print(torch.cuda.get_rng_state())

tensor([123,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0], dtype=torch.uint8)
tensor([123,   0,   0,   0,   0,   0,   0,   0,  40,   0,   0,   0,   0,   0,
          0,   0], dtype=torch.uint8)
~~~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98965
Approved by: https://github.com/kulinseth, https://github.com/ezyang
2023-04-18 07:52:21 +00:00
Bug Hunter Yan
2b54d673fc Add custom backend case for storage and automatically generate storage attributes. (#98478)
Currently storage only considers partial backend. We want storage to create on custom backend by key PrivateUse1.
It also provides an easy automatic generation of storage-related attributes.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_storage_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.TypedStorage.is_foo`
`torch.TypedStorage.foo()`
`torch.UntypedStorage.is_foo`
`torch.UntypedStorage.foo()`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98478
Approved by: https://github.com/albanD
2023-04-17 19:18:39 +00:00
Edward Z. Yang
756a86d52c Support large negative SymInt (#99157)
The strategy is that we will heap allocate a LargeNegativeIntSymNodeImpl whenever we have a large negative int, so that we can keep the old `is_symbolic` test (now called `is_heap_allocated`) on SymInt. Whenever we need to do something with these ints, though, we convert them back into a plain `int64_t` (and then, e.g., wrap it in whatever user specificed SymNodeImpl they need.) We cannot wrap directly in the user specified SymNodeImpl as we generally do not know what the "tracing context" is from C++. We expect large negative ints to be rare, so we don't apply optimizations like singleton-ifying INT_MIN.  Here's the order to review:

* c10/core/SymInt.h and cpp
  * `is_symbolic` renamed to `is_heap_allocated` as I needed to audit all use sites: the old `is_symbolic` test would return true for large negative int, but it would be wrong to then try to dispatch on the LargeNegativeIntSymNodeImpl which supports very few operations. In this file, I had to update expect_int,
  * If you pass in a large negative integer, we instead heap allocate it in `promote_to_negative`. The function is written in a funny way to keep compact constructor code for SymInt (the heap allocation happens out of line)
  * clone is now moved out-of-line
  * New method maybe_as_int which will give you a constant int if it is possible, either because it's stored inline or in LargeNegativeIntSymNodeImpl. This is the preferred replacement for previous use of is_symbolic() and then as_int_unchecked().
  * Rename toSymNodeImpl to toSymNode, which is more correct (since it returns a SymNode)
  * Complete rewrite of `normalize_symints.cpp` to use new `maybe_as_int`. Cannot easily use the old code structure, so it's now done doing a macro and typing out each case manually (it's actually not that bad.)
  * Reimplementations of all the unary operators by hand to use `maybe_as_int`, relatively simple.
* c10/core/LargeNegativeIntSymNodeImpl.h - Just stores a int64_t value, but it has to be big and negative. Most methods are not implemented, since we will rewrap the large negative int in the real SymNodeImpl subclass before doing operations with it
* The rest of the files are just rewriting code to use `maybe_as_int`. There is a nontrivial comment in c10/core/SymIntArrayRef.h

Very minor test adjustment in c10/test/core/SymInt_test.cpp . Plan to exercise this properly in next PR.

Companion XLA PR: https://github.com/pytorch/xla/pull/4882

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99157
Approved by: https://github.com/albanD
2023-04-15 22:43:51 +00:00
fakeYan
668c578083 Automatically generate attributes and methods for custom backends. (#98066)
Fixes #ISSUE_NUMBER
#97593
A new extension mechanism has been added.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.Tensor.is_foo`
`torch.Tensor.foo()`
`torch.nn.Module.foo()`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98066
Approved by: https://github.com/albanD
2023-04-13 22:04:05 +00:00
PyTorch MergeBot
cb3c478069 Revert "refactor(add privateuseone floder in aten/src/ATen): add a PrivateUse… (#98127)"
This reverts commit 5a537e291d.

Reverted https://github.com/pytorch/pytorch/pull/98127 on behalf of https://github.com/weiwangmeta due to Sorry, our internal code is not ready to take such changes
2023-04-08 05:32:21 +00:00
ykddd
5a537e291d refactor(add privateuseone floder in aten/src/ATen): add a PrivateUse… (#98127)
Add a PrivateUse1 folder to contain all the feature adaptations for PrivateUse1 under Aten,For example GetGeneratorPrivate which is used for the three-party backend to register his own Generator implementation.This makes it easier for us to centrally manage these features, and it will increase the convenience of adaptation for different back-end manufacturers. For more info: https://github.com/pytorch/pytorch/issues/98073

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98127
Approved by: https://github.com/bdhirsh
2023-04-07 03:43:16 +00:00
Sergii Dymchenko
5ab50cf048 Fix shoud/shoudl typos (#97930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97930
Approved by: https://github.com/clee2000
2023-03-30 08:27:16 +00:00
donnyyou
8a6e28ccd3 Fix typo for generator. (#97136)
Fix typo for generator.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97136
Approved by: https://github.com/Skylion007, https://github.com/kit1980
2023-03-20 20:43:56 +00:00
shibo
7038458c5b Add Generator register for the privateuse1 backend (#93920)
Fixes #92202
Add generator regiter for the backend of `privateuseone`

module: backend
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93920
Approved by: https://github.com/bdhirsh
2023-03-07 03:43:23 +00:00
PyTorch MergeBot
f152a79be9 Revert "update aten op overload to not use from to avoid compile errors (#89797)"
This reverts commit 021d267694.

Reverted https://github.com/pytorch/pytorch/pull/89797 on behalf of https://github.com/jeanschmidt due to breaking internal builds - more details on https://fburl.com/sandcastle/bz8mgkil
2023-02-10 11:32:25 +00:00
Elias Ellison
021d267694 update aten op overload to not use from to avoid compile errors (#89797)
Fix for https://github.com/pytorch/pytorch/issues/93591 by changing `random_.from` to `random_.from_int`.

The previous signature would fail when printed in an fx graph, because `from` is a reserved python keyword. This change affects serialization but I have added an adapter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89797
Approved by: https://github.com/tugsbayasgalan
2023-02-08 22:04:59 +00:00
Angel Avila
adc1a94ef4 Add tests for custom pybind type_casters (#89897)
This is a followup to #89115 which Fixes #88958

This adds tests to verify at runtime that the types returned by custom pybind type_casters are correctly specified in the second argument to `PYBIND11_TYPE_CASTER`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89897
Approved by: https://github.com/ezyang
2022-12-02 07:02:09 +00:00
Min Si
1ad0048b64 Refactor distribuetd to use absolute header path (#85780)
Headers under torch/csrc/distributed may be referened with relative path, e.g., "<c10d/...>". However, relative path cannot be gracefully handled by Meta internal build when the NCCL PG is hipified to support AMD/RCCL because the "hipified" header files are generated in other directories. Moreover, using absolute path for header inclusion is the state-of-the-art in most components in Pytorch. Thus, this patch refactors all header paths in torch/csrc/distributed to be absolute.

See D39835774 for more details about Meta internal complication.

**How to test**: commit 9e5d199 removes -I./torch/csrc/distributed in compile options. Thus use it to verify we don't miss any relative path use of torch/csrc/distributed headers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85780
Approved by: https://github.com/kumpera, https://github.com/huydhn
2022-09-30 05:13:50 +00:00
PyTorch MergeBot
a50d8864fc Revert "Refactor distribuetd to use absolute header path (#85780)"
This reverts commit 668082718a.

Reverted https://github.com/pytorch/pytorch/pull/85780 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but it breaks build due to a missing file <c10d/Store.hpp>
2022-09-30 02:04:29 +00:00
Min Si
668082718a Refactor distribuetd to use absolute header path (#85780)
Headers under torch/csrc/distributed may be referened with relative path, e.g., "<c10d/...>". However, relative path cannot be gracefully handled by Meta internal build when the NCCL PG is hipified to support AMD/RCCL because the "hipified" header files are generated in other directories. Moreover, using absolute path for header inclusion is the state-of-the-art in most components in Pytorch. Thus, this patch refactors all header paths in torch/csrc/distributed to be absolute.

See D39835774 for more details about Meta internal complication.

**How to test**: commit 9e5d199 removes -I./torch/csrc/distributed in compile options. Thus use it to verify we don't miss any relative path use of torch/csrc/distributed headers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85780
Approved by: https://github.com/kumpera
2022-09-30 00:27:24 +00:00
Howard Huang
74ead61944 [2/N] [Dispatchable Collectives] Extract ProcessGroup::Work into a separate class and update references (#83680)
### Changes
- Move ProcessGroup::Work into its own class and update all the references to it / header includes.

#### Motivation
In the future PRs we will repurpose ProcessGroup to instead contain a list of Backends (ProcessGroupNCCL/Gloo/UCC) and perform dispatching to them based on tensor type. This change is prevent a circular dependency with ProcessGroup depending on Backend and Backend depending on ProcessGroup::Work.

Differential Revision: [D38839212](https://our.internmc.facebook.com/intern/diff/D38839212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83680
Approved by: https://github.com/kwen2501
2022-09-14 13:05:58 +00:00
Edward Z. Yang
19e27b1556 Make dispatcher registrations of SymInt functions backwards compatible (#84557)
Previously, when we SymInt-ify a schema, this is a BC-breaking change
for all people who registered functions for that function; they
must accept c10::SymInt where they previously accepted int64_t.
This is not great.

With this change, I accept old type registrations transparently.  The
idea is in several parts:

- At the registration site, at compile time I have no idea whether or not
  if the function being registered has a SymInt schema or not.  So I
  must defer the exact compatibility check.  What I do instead is
  check if the function pointer registered to me has SymInt in the
  argument or not.  If it does, I assume it is new-style and ensure
  it is also registered to a special sym_ slot on KernelFunction.
  If not, it only goes in the conventional slot.

- At the dispatcher site, I know at compile time whether or not this
  is a SymInt function.  If it is, I check for a sym_ slot on the
  KernelFunction, and preferentially use that.  If no such slot
  exists, I then fall back to the regular slot... but I convert
  all SymInt arguments to int64_t arguments (doing assertions that
  no true symbolic integer was passed.)  I can skip this test entirely
  if the function doesn't have any SymInts in it; in that case I know
  that only the original slot could have been registered. Fortunately,
  both branches of the short circuit typecheck, so I didn't have to
  use SFINAE or if-constexpr to make it work; just a plain if statement
  that I expect the compiler to optimize away.

- Schema validation is now modestly more complicated. There are two parts. First, function schema validation proceeds by checking if the signature in question has any SymInt-like types in it or not. If it does, we do function schema validation against the real types; if it doesn't, we do validation against the fake types (but only for symint; MemoryFormat is always MemoryFormat). Second, cpp signature validation also keeps track of a "symint" cpp signature and a "non-symint" cpp signature. We only compare symint with symint, and non-symint with non-symint. I did not implement checking a conflict between a symint and non-symint cpp signature, though in principle you could try converting the SymInt types to non-SymInt types and doing the comparison that way.

To show it is working, I remove a bunch of c10::asIntArrayRefSlow shims, as the dispatcher is able to insert them automatically now.

I didn't update the Metal registrations (though they can get similar treatment) as OSS CI coverage is insufficient for this case.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39280965](https://our.internmc.facebook.com/intern/diff/D39280965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84557
Approved by: https://github.com/wconstab
2022-09-07 16:30:21 +00:00
Edward Z. Yang
ad44670fa1 Back out "Revert D38984222: Don't introduce new overload for SymInt (#83628)" (#84173)
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"

Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9

Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159

Also update Metal registrations for C++ registration changes.

Also update NNPI registration to account for tightened schema checking

Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
2022-08-29 18:01:07 +00:00
PyTorch MergeBot
c7edcd6968 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 9790d90e4b.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to Breaks internal builds, see D39076487
2022-08-27 01:23:17 +00:00
Edward Z. Yang
9790d90e4b Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-26 01:35:40 +00:00
PyTorch MergeBot
a7edf71360 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 8fae7027b3.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to breaking internal builds, see https://www.internalfb.com/diff/D38984222
2022-08-25 00:49:40 +00:00
Edward Z. Yang
8fae7027b3 Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-23 22:04:07 +00:00
Brian Hirsh
282de5539d add open device registration test with cpp extensions (#80477)
Adding a test for open device registration using cpp extensions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80477
Approved by: https://github.com/albanD, https://github.com/malfet
2022-07-12 01:46:16 +00:00
Nikolay Korovaiko
0a5123a752 Revert "Revert "Add support for directly passing symint to empty"" (#79954)
Relanding https://github.com/Krovatkin/pytorch/pull/new/krovatkin/symint_empty

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79954
Approved by: https://github.com/Chillee, https://github.com/kulinseth
2022-07-04 20:08:55 +00:00
Xiao Wang
ef0332e36d Allow relocatable device code linking in pytorch CUDA extensions (#78225)
Close https://github.com/pytorch/pytorch/issues/57543

Doc: check `Relocatable device code linking:` in https://docs-preview.pytorch.org/78225/cpp_extension.html#torch.utils.cpp_extension.CUDAExtension
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78225
Approved by: https://github.com/ezyang, https://github.com/malfet
2022-06-02 21:35:56 +00:00
Nikita Shulga
6302cdb9bc [Reland] Add BUILD_LAZY_CUDA_LINALG option (#73447)
Summary:
When enabled, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs

Avoid symbol clashes that can result in infinite recursion by moving all symbols in the library to its own namespace.

Add checks that should prevent calling self in recursion to `LinearAlgebraStubs.cpp`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73447

Reviewed By: albanD

Differential Revision: D34538827

Pulled By: malfet

fbshipit-source-id: f2535b471d3524768a84b2e169b6aa24c26c03bf
(cherry picked from commit 4ec24b079c861c1122f0fa86e280b977c3c2f7ac)
2022-03-01 21:33:07 +00:00
Jane Xu
31271284bc Revert D33992795: Add BUILD_LAZY_CUDA_LINALG option
Test Plan: revert-hammer

Differential Revision:
D33992795 (82130758f0)

Original commit changeset: d1fa351a3206

Original Phabricator Diff: D33992795 (82130758f0)

fbshipit-source-id: f0a66d7431aea2c358718eef16fab05712cd6cae
(cherry picked from commit df4900115f712e477ed5cc97510e6515a1ca17a9)
2022-02-25 18:37:31 +00:00
Nikita Shulga
82130758f0 Add BUILD_LAZY_CUDA_LINALG option (#72306)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72306

When enable, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D33992795

Pulled By: malfet

fbshipit-source-id: d1fa351a320659b29754997c20d754e69bfe36c0
(cherry picked from commit d5d6c69a988b9454538ecd28674206da2541de17)
2022-02-24 03:30:04 +00:00
Masaki Kozuki
7c739e1ab9 Resubmit #67161 (#67735)
Summary:
Skip building extensions if windows following https://github.com/pytorch/pytorch/pull/67161#issuecomment-958062611

Related issue: https://github.com/pytorch/pytorch/issues/67073

cc ngimel xwang233 ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67735

Reviewed By: bdhirsh

Differential Revision: D32141250

Pulled By: ngimel

fbshipit-source-id: 9bfdb7cf694c99f6fc8cbe9033a12429b6e4b6fe
2021-11-04 09:59:30 -07:00
Mike Ruberry
aa16de517d Revert D31984694: [pytorch][PR] make TORCH_(CUDABLAS|CUSOLVER)_CHECK usable in custom extensions
Test Plan: revert-hammer

Differential Revision:
D31984694 (d4493b27ee)

Original commit changeset: 0035ecd13980

fbshipit-source-id: c85689007719c9e4a930b0a8a32d481a501d3c14
2021-10-30 03:51:18 -07:00
Masaki Kozuki
d4493b27ee make TORCH_(CUDABLAS|CUSOLVER)_CHECK usable in custom extensions (#67161)
Summary:
Make `TORCH_CUDABLAS_CHECK` and `TORCH_CUSOLVER_CHECK` available in custom extensions by exporting the internal functions called by the both macros.

Rel: https://github.com/pytorch/pytorch/issues/67073

cc xwang233 ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67161

Reviewed By: jbschlosser

Differential Revision: D31984694

Pulled By: ngimel

fbshipit-source-id: 0035ecd1398078cf7d3abc23aaefda57aaa31106
2021-10-29 17:27:07 -07:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Jiewen Tan
357c4d9cc4 Add a test case for findDanglingImpls (#61104)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61104

This patch added a new test case for findDanglingImpls. The test case introduces a C++ extension which has a dangling impl such that findDanglingImpls can find it and output its information.

Test Plan:
python test/test_dispatch.py TestDispatch.test_find_dangling_impls_ext

Imported from OSS

Reviewed By: ezyang

Differential Revision: D29512520

fbshipit-source-id: 6883fb8f065f2c0ae0e7a1adf6fd298591497e2b
2021-07-07 13:34:16 -07:00
Gao, Xiang
a1f9a3c643 Fix UB in library.h (#57962)
Summary:
The function name and return type both are called `class_`, therefore they are ambiguous and this is UB and does not work on NVCC. See the tests for the failure case.

Thanks for the help of Thibaut Lutz from NVIDIA's compiler team.

cc: yueyericardo ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57962

Reviewed By: mruberry

Differential Revision: D28359400

Pulled By: ezyang

fbshipit-source-id: c64ec89203f99f656611aba34f7424eed7bc9e7c
2021-05-11 16:04:02 -07:00
Liang Luo
c37095760d [torch distributed] Implementing all_gather_base (#56315)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56315

This diff implements the all_gather_base in pytorch distributed.

Test Plan: dist.all_gather_base(output, input)...

Reviewed By: agolynski, amylittleyang

Differential Revision: D27488999

fbshipit-source-id: 937ec8bddf9527fa4d114f984d1d0f6a5b8c3936
2021-04-23 14:16:47 -07:00
peter
3517ee1bcb Fix ordered_dict.h for CUDA on Windows (#55275)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55266

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55275

Reviewed By: mrshenli

Differential Revision: D27623887

Pulled By: malfet

fbshipit-source-id: 6dac357e21179a259ac95f0e1b7399b03dacc81d
2021-04-07 23:43:35 -07:00
Wenlei Xie
2ecb2c7931 Pass Scalar by reference (#53583)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53583

`Scalar` takes 32 bytes due to `c10::complex<double>`
requires aligning to 16 bytes. Passing Scalar by reference
shows about 1% improvements on instruction count.

All the changes in this commit are codemoded except for
the following 4 files (which code-gen signatures):
```
tools/codegen/api/cpp.py
tools/codegen/api/native.py
tools/codegen/api/structured.py
caffe2/contrib/aten/gen_op.py
```

# Codemode

## Main Step

For the codemod part, here is the main command used:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
```

As you can tell, it codemods both `Scalar` and `optional<Scalar>`.  Apply these commands iteratively until reaching a fix-point (since one method signature might contain multiple `Scalar` parameter).

In retrospect, excluding `thrid_party` and `torch/csrc/jit` would be a good idea. (I revert it manually later, see https://github.com/pytorch/pytorch/pull/53479 as an reference).

## Pre-Step

Prior to applying the main command,  as some `Scalar` are presented as `at::Scalar` or `c10::Scalar`, so I codemod some of them in advance. Here is an incomplete list:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
```

## Fixup
There are a couple of post codemod fixup. For example, `const Scalar` will be codemoded into `const const Scalar&`. `at:Scalar` will be codemoded into `at::const Scalar&`  (if `Pre-step` is not done comprehensively). Here is an incomplete list:
```
fastmod --extensions cpp 'const const Scalar' 'const Scalar'
fastmod --extensions h 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod --extensions cpp 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod 'at::const Scalar&' 'const at::Scalar&'
```

## Supplementary

`cu` and `mm` files also need to be codemoded, for example:

```
fastmod --extensions cu 'at::const Scalar&' 'const at::Scalar&'
fastmod --extensions mm '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
```

Function pointers are not codemoded. Here is an incomplete list:

```
# Cover case: using index_fill_fn = void(*)(TensorIterator & iter, int64_t dim, int64_t self_dim_size, int64_t self_dim_stride, Scalar source);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'

# Cover case: using softplus_fn = void (*)(TensorIterator&, Scalar, Scalar);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions cpp '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)optional<Scalar>([, \)])' '${1}const optional<Scalar>&${2}'
```

Some corner cases needs to be manually fixed.

ghstack-source-id: 123970306

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D26904445

fbshipit-source-id: 8d8a002af4b5125f153a32f03c6956be7ae5671d
2021-03-15 23:17:06 -07:00
Edward Yang
37bf6c134b Register DefaultBackend implementations for functional/inplace structured operators (#53037)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53037

As remarked in #52277 it is easy to give an (inefficient, due to extra
redispatches) DefaultBackend implementation of foo and foo_ in terms of
foo_out.  This patch enables code generation for DefaultBackend in these
cases by default for all structured kernels.  You can see the payoff
in MSNPU extension: it only has to register a kernel for add.out, and it
gets add and add_ kernels automatically.

The actual code changes are very modest:
- When DefaultBackend, call the dispatched (not direct native::)
  functions to allocate tensors, change device guard, etc
- Don't call impl() for DefaultBackend (as it doesn't exist); instead,
  directly generate a call to at::foo_out to do the actual work.
- Do NOT generate DefaultBackend implementation for foo_out.  Actually,
  there is a case to be made for this being a good idea with more infra;
  see comments inside.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D26731225

Pulled By: ezyang

fbshipit-source-id: 939da7cb69f694722ec293e5e42e74a755dd0985
2021-03-02 14:13:08 -08:00
Qifan Lu
4e2ab2cd73 Move generator state APIs to ATen (#49589)
Summary:
## Rationale

While most of the `torch.Generator` properties and methods are implemented as a thin wrapper of the corresponding `at::Generator` methods, `torch.Generator.get_state()` and `torch.Generator.set_state()` are implemented in legacy Torch code and are not dispatched through the `c10::GeneratorImpl` interface. This is not structured well and makes implementing generators for new backends (e.g. `XLAGeneratorImpl` for the XLA backend) inconvenient. As such, this pull request seeks to move these generator state APIs to c10 and ATen.

## What is being refactored?
* Interfaces
  - Added `c10::GeneratorImpl::set_state` and `c10::GeneratorImpl::state` for getting and setting the internal state of a random number generator.
  - `at::Generator::set_state` and `at::Generator::state` wraps the above-mentioned APIs, as it's basically a PIMPL.
  - Added helper function `at::detail::check_rng_state` for checking the validity of new RNG state tensor.
* CPU Generator
  - Renamed and moved `THTensor_(setRNGState)` and `THTensor_(getRNGState)` to `CPUGeneratorImpl::set_state` and `CPUGenerator::state`.
  - Renamed and moved `THGeneratorState` and `THGeneratorStateNew` to `CPUGeneratorStateLegacy` and `CPUGeneratorState`.
* CUDA Generator
  - Renamed and moved `THCRandom_setRNGState` and `THCRandom_getRNGState` to `CUDAGeneratorImpl::set_state` and `CUDAGeneratorImpl::state`.
* PyTorch Bindings
  - `THPGenerator_setState` and `THPGenerator_getState` now simply forward to `at::Generator::set_state` and `at::Generator::state`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49589

Reviewed By: H-Huang

Differential Revision: D25785774

Pulled By: pbelevich

fbshipit-source-id: 8ed79209c4ffb1a0ae8b19952ac8871ac9e0255f
2021-01-06 18:26:56 -08:00
Sebastian Messmer
4a14020c0d Remove .impl_UNBOXED() and functionalities associated with it (#49220)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49220

Since all ops are c10-full, we can remove .impl_UNBOXED now.
This also removes the ability of KernelFunction or CppFunction to store unboxedOnly kernels.
ghstack-source-id: 119450489

Test Plan: waitforsandcastle

Reviewed By: ezyang

Differential Revision: D25490225

fbshipit-source-id: 32de9d591e6a842fe18abc82541580647e9cfdad
2021-01-06 14:22:46 -08:00
Yixin Bao
840e71f4e6 Check CUDA kernel launches (/fbcode/caffe2/) (#49145)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49145

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49105

(1) Add a safety check `C10_CUDA_KERNEL_LAUNCH_CHECK()` after each kernel launch. This diff only changes the files inside the directory /fbsource/fbcode/caffe2/modules/, /fbsource/fbcode/caffe2/fb/, /fbsource/fbcode/caffe2/test/.

(2) Get rid of old check `AT_CUDA_CHECK(cudaGetLastError())` when necessary.

Test Plan:
Test build:
```
buck build mode/dev-nosan //caffe2/modules/detectron:
buck test mode/dev-nosan //caffe2/modules/detectron:
buck build mode/dev-nosan //caffe2/torch/fb/:
buck test mode/dev-nosan //caffe2/torch/fb/:
```

To check for launches without checks:
```
python3 caffe2/torch/testing/check_kernel_launches.py
```
Make sure none of the updated files are in the returned list.

Reviewed By: r-barnes

Differential Revision: D25452852

fbshipit-source-id: d6657edab612c9e0fa99b29c68460be8b1a20064
2020-12-10 10:43:03 -08:00
Supriya Rao
bfa95f90a0 Revert D25325039: Check CUDA kernel launches (/fbcode/caffe2/)
Test Plan: revert-hammer

Differential Revision:
D25325039 (f5e9ffbc27)

Original commit changeset: 2043d6e63c7d

fbshipit-source-id: 5377dd2aa7c6f58c8641c956b7642c7c559bbc40
2020-12-09 14:07:16 -08:00
Yixin Bao
f5e9ffbc27 Check CUDA kernel launches (/fbcode/caffe2/) (#49105)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49105

(1) Add a safety check `C10_CUDA_KERNEL_LAUNCH_CHECK()` after each kernel launch. This diff only changes the files inside the directory /fbsource/fbcode/caffe2/modules/, /fbsource/fbcode/caffe2/fb/, /fbsource/fbcode/caffe2/test/.

(2) Get rid of old check `AT_CUDA_CHECK(cudaGetLastError())` when necessary.

Test Plan:
Test build:
```
buck build //caffe2/modules/detectron:
buck build //caffe2/torch/fb/:
```

To check for launches without checks:
```
python3 caffe2/torch/testing/check_kernel_launches.py
```
Make sure none of the updated files are in the returned list.

Reviewed By: r-barnes

Differential Revision: D25325039

fbshipit-source-id: 2043d6e63c7d029c35576d3101c18247ffe92f01
2020-12-09 12:34:55 -08:00
Jithun Nair
5f62308739 Hipify revamp [REDUX] (#48715)
Summary:
[Refiled version of earlier PR https://github.com/pytorch/pytorch/issues/45451]

This PR revamps the hipify module in PyTorch to overcome a long list of shortcomings in the original implementation. However, these improvements are applied only when using hipify to build PyTorch extensions, not for PyTorch or Caffe2 itself.

Correspondingly, changes are made to cpp_extension.py to match these improvements.

The list of improvements to hipify is as follows:

1. Hipify files in the same directory as the original file, unless there's a "cuda" subdirectory in the original file path, in which case the hipified file will be in the corresponding file path with "hip" subdirectory instead of "cuda".
2. Never hipify the file in-place if changes are introduced due to hipification i.e. always ensure the hipified file either resides in a different folder or has a different filename compared to the original file.
3. Prevent re-hipification of already hipified files. This avoids creation of unnecessary "hip/hip" etc. subdirectories and additional files which have no actual use.
4. Do not write out hipified versions of files if they are identical to the original file. This results in a cleaner output directory, with minimal number of hipified files created.
5. Update header rewrite logic so that it accounts for the previous improvement.
6. Update header rewrite logic so it respects the rules for finding header files depending on whether "" or <> is used.
7. Return a dictionary of mappings of original file paths to hipified file paths from hipify function.
8. Introduce a version for hipify module to allow extensions to contain back-compatible code that targets a specific point in PyTorch where the hipify functionality changed.
9. Update cuda_to_hip_mappings.py to account for the ROCm component subdirectories inside /opt/rocm/include. This also results in cleanup of the Caffe2_HIP_INCLUDE path to remove unnecessary additions to the include path.

The list of changes to cpp_extension.py is as follows:

1. Call hipify when building a CUDAExtension for ROCm.
2. Prune the list of source files to CUDAExtension to include only the hipified versions of any source files in the list (if both original and hipified versions of the source file are in the list)
3. Add subdirectories of /opt/rocm/include to the include path for extensions, so that ROCm headers for subcomponent libraries are found automatically

cc jeffdaily sunway513 ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48715

Reviewed By: bdhirsh

Differential Revision: D25272824

Pulled By: ezyang

fbshipit-source-id: 8bba68b27e41ca742781e1c4d7b07c6f985f040e
2020-12-02 18:03:23 -08:00
Nikita Shulga
8af9f2cc23 Revert D24924736: [pytorch][PR] Hipify revamp
Test Plan: revert-hammer

Differential Revision:
D24924736 (10b490a3e0)

Original commit changeset: 4af42b8ff4f2

fbshipit-source-id: 7f8f90d55d8a69a2890ec73622fcea559189e381
2020-11-18 11:48:30 -08:00
Jithun Nair
10b490a3e0 Hipify revamp (#45451)
Summary:
This PR revamps the hipify module in PyTorch to overcome a long list of shortcomings in the original implementation. However, these improvements are applied only when using hipify to build PyTorch extensions, **not for PyTorch or Caffe2 itself**.

Correspondingly, changes are made to `cpp_extension.py` to match these improvements.

The list of improvements to hipify is as follows:

1. Hipify files in the same directory as the original file, unless there's a "cuda" subdirectory in the original file path, in which case the hipified file will be in the corresponding file path with "hip" subdirectory instead of "cuda".
2. Never hipify the file in-place if changes are introduced due to hipification i.e. always ensure the hipified file either resides in a different folder or has a different filename compared to the original file.
3. Prevent re-hipification of already hipified files. This avoids creation of unnecessary "hip/hip" etc. subdirectories and additional files which have no actual use.
4. Do not write out hipified versions of files if they are identical to the original file. This results in a cleaner output directory, with minimal number of hipified files created.
5. Update header rewrite logic so that it accounts for the previous improvement.
6. Update header rewrite logic so it respects the rules for finding header files depending on whether `""` or `<>` is used.
7. Return a dictionary of mappings of original file paths to hipified file paths from `hipify` function.
8. Introduce a version for hipify module to allow extensions to contain back-compatible code that targets a specific point in PyTorch where the hipify functionality changed.
9. Update `cuda_to_hip_mappings.py` to account for the ROCm component subdirectories inside `/opt/rocm/include`. This also results in cleanup of the `Caffe2_HIP_INCLUDE` path to remove unnecessary additions to the include path.

The list of changes to `cpp_extension.py` is as follows:
1. Call `hipify` when building a CUDAExtension for ROCm.
2. Prune the list of source files to CUDAExtension to include only the hipified versions of any source files in the list (if both original and hipified versions of the source file are in the list)
3. Add subdirectories of /opt/rocm/include to the include path for extensions, so that ROCm headers for subcomponent libraries are found automatically

cc jeffdaily sunway513 hgaspar lcskrishna ashishfarmer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45451

Reviewed By: ezyang

Differential Revision: D24924736

Pulled By: malfet

fbshipit-source-id: 4af42b8ff4f21c3782dedb8719b8f9f86b34bd2d
2020-11-18 08:37:49 -08:00
Gao, Xiang
b12d645c2f Test TORCH_LIBRARY in CUDA extension (#47524)
Summary:
In the [official documentation](https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html), it is recommended to use `TORCH_LIBRARY` to register ops for TorchScript. However, that code is never tested with CUDA extension and is actually broken (https://github.com/pytorch/pytorch/issues/47493). This PR adds a test for it. It will not pass CI now, but it will pass when the issue https://github.com/pytorch/pytorch/issues/47493 is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47524

Reviewed By: zou3519

Differential Revision: D24991839

Pulled By: ezyang

fbshipit-source-id: 037196621c7ff9a6e7905efc1097ff97906a0b1c
2020-11-16 13:12:22 -08:00
Sebastian Messmer
edf751ca2f Make empty c10-full (#46092)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46092

Make empty c10-full without using hacky-wrapper, i.e. port the kernel to the new style signature.

This PR also changes the signature of some helpers called by empty to the new style.
ghstack-source-id: 116544203

(Note: this ignores all push blocking failures!)

Test Plan:
vs prev diff (outdated, before c10::optional fix): https://www.internalfb.com/intern/fblearner/details/224735103/

after c10::optional fix:
https://www.internalfb.com/intern/fblearner/details/231391773/

Also, after the c10::optional fix, the instruction counting benchmark shows a 2% regression for calling empty from Python. We decided this is acceptable and decided against landing D24425836 which would fix the regression.

Reviewed By: ezyang

Differential Revision: D24219944

fbshipit-source-id: e554096e90ce438c75b679131c3151ff8e5c5d50
2020-11-12 17:08:21 -08:00
Wanchao Liang
553ccccc54 [c10d] switch ProcessGroup to be managed by intrusive_ptr (#47343)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47343

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D24723418

Pulled By: wanchaol

fbshipit-source-id: 0463819b96c53b12bdbb3905431110d7b21beb77
2020-11-12 07:36:23 -08:00
Wanchao Liang
665ac2f7b0 [reland] [c10d] switch Store to be managed by intrusive_ptr (#47808)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47808

reland https://github.com/pytorch/pytorch/pull/47074

Test Plan: wait for ci

Reviewed By: gmagogsfm

Differential Revision: D24905246

fbshipit-source-id: edeb7e6e486570ce889f12512e9dc02061d6cc03
2020-11-11 22:53:20 -08:00
Wanchao Liang
70ae5685f9 [reland][c10d] switch ProcessGroup::Work to be managed by intrusive_ptr (#47806)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47806

reland https://github.com/pytorch/pytorch/pull/44046

Test Plan: wait for ci

Reviewed By: gmagogsfm

Differential Revision: D24905245

fbshipit-source-id: ad75ace5432fcfd22d513878f5a73c4bb017324e
2020-11-11 22:51:03 -08:00
Wanchao Liang
dac0192148 Revert D23632280: [c10d] switch ProcessGroup::Work to be managed by intrusive_ptr
Test Plan: revert-hammer

Differential Revision:
D23632280 (0650a6166f)

Original commit changeset: 0a4642a8ffab

fbshipit-source-id: 2aa8ddb874fab11f773f4c08d740afcd865482e9
2020-11-11 10:54:08 -08:00
Wanchao Liang
1f946e942d Revert D24667128: [c10d] switch Store to be managed by intrusive_ptr
Test Plan: revert-hammer

Differential Revision:
D24667128 (0cfe3451d4)

Original commit changeset: 9b6024c31c85

fbshipit-source-id: d8ddf9eb2fccef5023e05698e0c4662708fe4945
2020-11-11 10:49:58 -08:00
Wanchao Liang
0cfe3451d4 [c10d] switch Store to be managed by intrusive_ptr (#47074)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47074

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D24667128

Pulled By: wanchaol

fbshipit-source-id: 9b6024c31c851b7c3243540f460ae57323da523b
2020-11-10 23:36:44 -08:00
Wanchao Liang
0650a6166f [c10d] switch ProcessGroup::Work to be managed by intrusive_ptr (#44046)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44046

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23632280

Pulled By: wanchaol

fbshipit-source-id: 0a4642a8ffabdd26c52c1baabfa30c0f446c3c85
2020-11-10 23:30:22 -08:00
Pritam Damania
a2b4177c5b Add barrier() at the end of init_process_group and new_group. (#45181)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45181

`init_process_group` and `new_group` update a bunch of global
variables after initializing the actual process group. As a result, there is a
race that after initializing the process group on say rank 0, if we immediately
check the default process group on rank 1 (say via RPC), we might actually get
an error since rank 1 hasn't yet updated its _default_pg variable.

To resolve this issue, I've added barrier() at the end of both of these calls.
This ensures that once these calls return we are guaranteed about correct
initialization on all ranks.

Since these calls are usually done mostly during initialization, it should be
fine to add the overhead of a barrier() here.

#Closes: https://github.com/pytorch/pytorch/issues/40434, https://github.com/pytorch/pytorch/issues/40378
ghstack-source-id: 112923112

Test Plan:
Reproduced the failures in
https://github.com/pytorch/pytorch/issues/40434 and
https://github.com/pytorch/pytorch/issues/40378 and verified that this PR fixes
the issue.

Reviewed By: mrshenli

Differential Revision: D23858025

fbshipit-source-id: c4d5e46c2157981caf3ba1525dec5310dcbc1830
2020-09-25 15:46:59 -07:00
Basil Hosmer
79e6aaeb4c pull empty() out of use_c10_dispatcher: full (#43572)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43572

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D23326019

Pulled By: bhosmer

fbshipit-source-id: 10a4d7ffe33b4be4ae45396725456c6097ce1757
2020-08-26 22:51:06 -07:00
Sebastian Messmer
3a19af2427 Make operators with optional Tensor? arguments c10-full (#41610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41610

Previously, operators that have a `Tensor?` (i.e. optional tensor) in their schema implemented it using `Tensor` in C++ and filled in an undefined tensor for the None case.
The c10 operator library, however, expects `Tensor?` to be represented as `optional<Tensor>`, so those operators couldn't be c10-full yet and still had to use codegenerated unboxing instead of templated unboxing.

This PR changes that. It extends the `hacky_wrapper_for_legacy_signatures` to not only take case of TensorOptions, but now also map between signatures taking `Tensor` and `optional<Tensor>`.
For this, it requires an additional template parameter, the expected signature, and it uses that to go argument-by-argument and unwrap any optionals it finds.
ghstack-source-id: 108873701

Test Plan: waitforsandcastle

Reviewed By: bhosmer

Differential Revision: D22607879

fbshipit-source-id: 57b2fb01a294b804f82cd55cd70f0ef4a478e14f
2020-07-31 16:09:08 -07:00
Stanislau Hlebik
b774ce54f8 remediation of S205607
fbshipit-source-id: 798decc90db4f13770e97cdce3c0df7d5421b2a3
2020-07-17 17:19:47 -07:00
Stanislau Hlebik
8fdea489af remediation of S205607
fbshipit-source-id: 5113fe0c527595e4227ff827253b7414abbdf7ac
2020-07-17 17:17:03 -07:00
Omkar Salpekar
9d92fa2679 [NCCL] Add timeout to ProcessGroup Work Wait (#40944)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40944

This stack adds Work-level timeout for blocking wait.

This PR just changes the API to accept a default wait arg for the wait function in each ProcessGroup backend. The ProcessGroup superclass correctly waits for the given timeout by changing the CV wait to wait_for.

Closes: https://github.com/pytorch/pytorch/issues/37571
ghstack-source-id: 107835735

Test Plan: Tests in 4th PR in this stack

Reviewed By: jiayisuse

Differential Revision: D22107135

fbshipit-source-id: b38c07cb5e79e6c86c205e580336e7918ed96501
2020-07-16 10:56:58 -07:00
Changji Shi
47c72be3d7 Port /test/cpp_extensions/rng_extension.cpp to new operator registration API (#39459)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39459

Update to this PR: this code isn't going to fully solve https://github.com/pytorch/pytorch/issues/37010. The changes required for 37010 is more than this PR initially planned. Instead, this PR switches op registration of rng related tests to use the new API (similar to what was done in #36925)

Test Plan:
1) unit tests

Imported from OSS

Reviewed By: ezyang

Differential Revision: D22264889

fbshipit-source-id: 82488ac6e3b762a756818434e22c2a0f9cb9dd47
2020-06-26 16:12:54 -07:00
Sebastian Messmer
0494e0ad70 Back out "Revert D21581908: Move TensorOptions ops to c10" (#40595)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40595

ghstack-source-id: 106691774

Test Plan: waitforsandcastle

Differential Revision: D22247729

fbshipit-source-id: 14745588cae267c1e0cc51cd9541a9b8abb830e5
2020-06-26 12:57:09 -07:00
Sebastian Messmer
581ad48806 Revert D21581908: Move TensorOptions ops to c10
Test Plan: revert-hammer

Differential Revision:
D21581908

Original commit changeset: 6d4a9f526fd7

fbshipit-source-id: fe1e6368a09120ea40dea405e8409983541e3cb5
2020-06-23 16:10:07 -07:00
Sebastian Messmer
b623bdeabb Move TensorOptions ops to c10 (#39492)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39492

This PR adds use_c10_dispatcher: full to ops taking TensorOptions. To allow this, since the c10 operator library doesn't know about TensorOptions, we need to register the operator kernels as optional<ScalarType>, optional<Device>, optional<Layout>, optional<bool> instead, and also call them this way.

Changes:

Add use_c10_dispatcher: full to those ops
Write hacky_wrapper_for_legacy_signatures which takes an old-style kernel (i.e. one written to take TensorOptions) an creates a wrapper kernel for it that takes the scattered optional<ScalarType>, optional<Device>, optional<Layout>, optional<bool> instead.
Change codegen so that all op registrations are wrapped into hacky_wrapper_for_legacy_signatures. This is added to all ops but is a no-op if the op doesn't take TensorOptions. This allows us in the future to just change a kernel signature from TensorOptions to the scattered version and have it work without having to touch codegen.
Change codegen so that the frontend calls those operators with expanded arguments instead of with a TensorOptions object. This is required because now the kernels are written in this way.
This PR does not remove TensorOptions special cases from codegen, but instead it separates kernels from the codegen/frontend issues. After this, kernels can be worked on separately without having to touch codegen and codegen can be worked on without having to touch kernels.

Codegen diff: P133121032

ghstack-source-id: 106426630

Test Plan: waitforsandcastle

Differential Revision: D21581908

fbshipit-source-id: 6d4a9f526fd70fae40581bf26f3ccf794ce6a89e
2020-06-23 14:13:34 -07:00
Sebastian Messmer
86b1afa039 Assert that kernels are called with the right signature (#40251)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40251

Rather than segfaulting, we should show a good error message when in op.call<Return, Args...>(...) the Return type or Args types mismatch the kernel.

This adds an assertion comparing two std::type_index to the call path, but that should be fast. Hashing the function signature is also in the call path and not strictly constexpr, but I checked on godbolt that GCC >=5 and Clang >=3.8 optimize it away and make it constexpr, i.e. it's not part of the assembly.
ghstack-source-id: 106194240

Test Plan: waitforsandcastle

Differential Revision: D22126701

fbshipit-source-id: 6c908a822e295757bcc0014f78f51e6a560f221f
2020-06-18 21:54:05 -07:00
Sebastian Messmer
cb8b2f0636 Revert D21534052: Assert that kernels are called with the right signature
Test Plan: revert-hammer

Differential Revision:
D21534052

Original commit changeset: 6be436a3f205

fbshipit-source-id: a149c5ca7f9e78947ae3059ac4470712f291660b
2020-06-18 15:00:13 -07:00
Sebastian Messmer
55cdd31bd0 Assert that kernels are called with the right signature (#38361)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38361

Rather than segfaulting, we should show a good error message when in op.call<Return, Args...>(...) the Return type or Args types mismatch the kernel.

This adds an assertion comparing two std::type_index to the call path, but that should be fast. Hashing the function signature is also in the call path and not strictly constexpr, but I checked on godbolt that GCC >=5 and Clang >=3.8 optimize it away and make it constexpr, i.e. it's not part of the assembly.

supersedes D17485438

ghstack-source-id: 106178820

Test Plan: waitforsandcastle

Differential Revision: D21534052

fbshipit-source-id: 6be436a3f20586277a051d764af29e21d5567da0
2020-06-18 14:22:48 -07:00
Kurt Mohler
f9eb8824f1 Remove datatype from Storage and StorageImpl (#38870)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38870

* Removed dtype data member from StorageImpl
* Removed any methods or method arguments in Storage/StorageImpl that deal with dtypes
* Update all callers of the changed API

Part of issue https://github.com/pytorch/pytorch/issues/33950
Original PR: https://github.com/pytorch/pytorch/pull/38038

Reviewed By: albanD

Differential Revision: D21549645

Pulled By: ezyang

fbshipit-source-id: 4289b356c55ff6b9530376a79343b99b540ee3de
2020-05-21 15:26:08 -07:00
lixinyu
5a979fcb99 allow user passing relative paths in include_dirs within setuptools.setup (#38264)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38264

Test Plan: Imported from OSS

Differential Revision: D21509277

Pulled By: glaringlee

fbshipit-source-id: b0bc17d375a89b96b1bdacde5987b4f4baa9468e
2020-05-13 20:00:12 -07:00
Edward Yang
fe88806784 Back out "Revert D21171334: [pytorch][PR] Change StorageImpl to track byte count rather than element count" (#37893)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37893

Original commit changeset: 50746043acf3

Test Plan: sandcastle and ossci

Reviewed By: malfet, seemethere, ngimel

Differential Revision: D21416509

fbshipit-source-id: 735ec4e61f9d36d4537f52dd2dc6267751aeb94b
2020-05-05 22:43:15 -07:00
Edward Yang
a2fc7f787a Revert D21171334: [pytorch][PR] Change StorageImpl to track byte count rather than element count
Test Plan: revert-hammer

Differential Revision:
D21171334

Original commit changeset: 37329a379de9

fbshipit-source-id: 50746043acf3c76754688de0fe6f1cc12437ea2f
2020-05-05 16:36:15 -07:00
Kurt Mohler
3706803b60 Change StorageImpl to track byte count rather than element count (#37776)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37776

* Remove type-specific size tracking in favor of byte size tracking in Storage and StorageImpl
* Changed numel() and set_numel() to nbytes() and set_nbytes()
* Added enum argument to Storage/StorageImpl constructor to indicate new meaning of the size parameter
* Update all callers of the changed API

Part of issue https://github.com/pytorch/pytorch/issues/33950
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37028

Differential Revision: D21171334

Pulled By: ezyang

fbshipit-source-id: 37329a379de9a3a83cc5e9007e455a3e1c2d10b8
2020-05-05 14:20:51 -07:00
Pavel Belevich
1beca4ac6a Prerequisites for CSPRNG (#36631)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36631

Summary of changes

1. Moved random transformation functions to DistributionHelper.h (`uniform_int_from_to_distribution`, `uniform_int_full_range_distribution`, `uniform_int_distribution`) to avoid code duplication between default CPU, CUDA rngs and custom rng extensions
2. Made GeneratorImpl fields protected instead of private
3. Introduced `TORCH_CHECK_IF_NOT_ON_CUDA` that does the same as `TORCH_CHECK` if it is not CUDA/ROCm device
4. To test multiple rng extensions I had to move ops registration to the method `registerOps()`, expose it to python and call it `def setUp(self)`

Test Plan: Imported from OSS

Differential Revision: D21229202

Pulled By: pbelevich

fbshipit-source-id: 6aa3280f2fc3324cf3e748388b5087e3a1e49f23
2020-04-24 12:25:37 -07:00
Edward Yang
a894fff265 Back out "Revert D21089648: Put TORCH_LIBRARY in torch/library.h; add custom class API"
Summary: Original commit changeset: 636e8a11afc6

Test Plan: export to OSS

Reviewed By: malfet

Differential Revision: D21170502

fbshipit-source-id: e8f35f103c4924aedbcaaf868475008d24bdeeab
2020-04-22 09:18:23 -07:00
James Reed
2ccdc39dce Revert D21089648: Put TORCH_LIBRARY in torch/library.h; add custom class API
Test Plan: revert-hammer

Differential Revision:
D21089648

Original commit changeset: 8d54329c1252

fbshipit-source-id: 636e8a11afc628a4cdae9d44824985c10c70555e
2020-04-21 12:21:45 -07:00
Edward Yang
01100cb477 Put TORCH_LIBRARY in torch/library.h; add custom class API (#36742)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36742

Now, you can define a custom class inside a TORCH_LIBRARY block.
It looks very similar to what you did before.  Instead of

```
static auto m = torch::class_<Class>("Namespace", "Class").def("foo", foo);
```

you write

```
TORCH_LIBRARY(Namespace, m) {
  m.class_<Class>("Class")
    .def("foo", foo);
}
```

All the old usages still work, but at some point we should start
updating the tutorials when we're ready to go 100% live with the
new pybind11 style API.

custom class API previously lived in torch/ folder and in torch
namespace, so for consistency, the new TORCH_LIBRARY also got
moved to torch/library.h The definition of Library::class_ is in the
bottom of that header because I need all of the class_ constructors
available, but there is a circular dependency between the two headers.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D21089648

Test Plan: Imported from OSS

Pulled By: ezyang

fbshipit-source-id: 8d54329c125242605336c22fa1642aae6940b507
2020-04-21 10:05:21 -07:00
Edward Yang
e29348f828 Switch to pybind11 style registration function API. (#36258)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36258

Previous we had a && chaining style API.  There are some downsides to
this API:

- It's easy to forget the 'static' qualifier in front, leading to
  subtle ODR bugs.
- It is not compatible with torchbind class_ definitions, as these
  need multiple levels of chaining.  So in practice people end
  up having to define multiple static initializers, one per class.
- It's not like pybind11.
- There's no way to conveniently get the file and line number of
  the registration, as there is no macro point in the API.
- The old API doesn't really encourage people to put all of their
  definitions for a library in one place, and to give a custom
  namespace for it.  Similarly, the old API wasn't very DRY, because
  you had to keep repeating the namespace/dispatch key you
  were writing implementations for.

The new API is modeled exactly off of the PYBIND11_MODULE macro:
you write:

```
TORCH_LIBRARY(aten, m) {
  m.def("aten::add(Tensor self, Tensor other) -> Tensor");
  ...
}
```

in a non-chaining fashion, and under the hood the macro expands to
define a function, and define a static initializer that allocates
c10::Library (previously called c10::Module, but we renamed it
to avoid confusion with the existing NN module concept), passes
it to your function, and then retains it for the rest of the lifetime
of the program.  Specification of the namespace is mandatory,
and in later commit I plan to make it a hard error to TORCH_LIBRARY
the same library name twice.

If you are specifying an implementation for an existing operator
(e.g., you're the XLA backend, or even if you're just putting
registrations for implementations at the implementation site),
you should use TORCH_LIBRARY_IMPL, which instead takes a backend
argument (instead of namespace) and can be used to specify an
implementation for a backend.  Unlike TORCH_LIBRARY, you can do
as many of these as you want for a backend.

This needs updates to the mobile code analyzer.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929257

Pulled By: ezyang

fbshipit-source-id: ba04d78492e8c93ae7190165fb936f6872896ada
2020-04-16 10:44:21 -07:00
Edward Yang
dd64e738c5 Expunge TensorId from all DispatchKey names. (#36240)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36240

It's annoying, historical, and unnecessary (enum class is already
namespaced).  I did this codemod with:

```
git grep -l 'CPUTensorId' | xargs sed -i 's/CPUTensorId/CPU/g'
git grep -l 'CUDATensorId' | xargs sed -i 's/CUDATensorId/CUDA/g'
git grep -l 'VariableTensorId' | xargs sed -i 's/VariableTensorId/Autograd/g'
git grep -l 'HIPTensorId' | xargs sed -i 's/HIPTensorId/HIP/g'
git grep -l 'MSNPUTensorId' | xargs sed -i 's/MSNPUTensorId/MSNPU/g'
git grep -l 'XLATensorId' | xargs sed -i 's/XLATensorId/XLA/g'
git grep -l 'PrivateUse1_TensorId' | xargs sed -i 's/PrivateUse1_TensorId/PrivateUse1/g'
git grep -l 'PrivateUse2_TensorId' | xargs sed -i 's/PrivateUse2_TensorId/PrivateUse2/g'
git grep -l 'PrivateUse3_TensorId' | xargs sed -i 's/PrivateUse3_TensorId/PrivateUse3/g'
git grep -l 'AutocastTensorId' | xargs sed -i 's/AutocastTensorId/Autocast/g'
git grep -l '_PreAutogradTensorId' | xargs sed -i 's/_PreAutogradTensorId/_PreAutograd/g'
git grep -l 'TESTING_ONLY_GenericWrapperTensorId' | xargs sed -i 's/TESTING_ONLY_GenericWrapperTensorId/TESTING_ONLY_GenericWrapper/g'
git grep -l 'TESTING_ONLY_GenericModeTensorId' | xargs sed -i 's/TESTING_ONLY_GenericModeTensorId/TESTING_ONLY_GenericMode/g'
```

Then I did a git grep for remaining TensorId occurrences, and manually
killed those (mostly in codegen, and some docs that needed updating).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929255

Pulled By: ezyang

fbshipit-source-id: dc371b6aa6e6ea7c0a5660137c14debde806a09d
2020-04-13 23:33:44 -07:00
Pavel Belevich
c9a1fc2b31 replace Generator arguments with c10::optional<Generator> (#36232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36232

The purpose of this PR is to replace `at::Generator generator = nullptr` with `c10::optional<at::Generator> = c10::nullopt` all over the code

* #36230 Replace std::shared_ptr with c10::intrusive_ptr in at::Generator

Test Plan: Imported from OSS

Differential Revision: D20943603

Pulled By: pbelevich

fbshipit-source-id: 65d335990f01fcc706867d5344e73793fad68ae6
2020-04-13 16:26:57 -07:00
Edward Yang
2de3e491a8 [RELAND] Add temporary impl_UNBOXED syntax sugar for unboxed-only defs. (#36223)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36223

Previously #35714

There are a lot of unboxed only defs.  We're committed to removing
them at the end of the half but as I am about to do a lot of porting
to the new API, let's get them into a form where they're easy to
remove.  This is a new overload impl_UNBOXED that will pass
the function pointer straight to CppFunction::makeUnboxedOnly

I don't attempt to make the _UNBOXED API complete; in particular,
catchall declarations don't get this sugar (as there are very few
of them).

To get some coverage of _UNBOXED API for code analysis, I switched
one of our unboxed tests to be an impl rather than a def.  This
shouldn't materially affect coverage.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929259

Pulled By: ezyang

fbshipit-source-id: 72d2061b6c8a6afbcd392b47f53ade18de2f9184
2020-04-09 14:58:33 -07:00
Edward Yang
ef07bb65e9 [RELAND] Add DispatchKey impl overload; remove use of torch::dispatch (#36222)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36222

Reland of #35706, with fixes to code analyzer.

It is extremely common to define implementations of operators at a
specific dispatch key, so we add an overload to impl specifically for
this case.  I then delete most uses of torch::dispatch

dispatch_autograd call sites can't make use of this overload.  So
instead the new preferred way to specify something as autograd is to
pass kAutograd as the dispatch key (short form, analogous to kCPU/kCUDA
which we support today).

I flip flopped about whether or not kAutograd should have the type
DispatchKey or some other type (to help better encapsulate the
DispatchKey enum); this is more direct and I can't think of any
BC problems from this usage.

Some other reorganization I did:
- I renamed all of the worker functions in op_registration to have
  a leading underscore and made them private, just to make it more
  clear what the public versus private API were (the private API
  shouldn't be used by users because it doesn't come with && overloads)
  Note that this means I needed to adjust the regex in the
  code analyzer, because
- In a few places where I was touching lines already, I replaced
  full DispatchKey typed out enums with shorter kFoo names, similar
  to kAutograd but I didn't publish these globally.
- Code analyzer now prints a unified diff, and in the other order
  (because I tend to think of the diff as reporting how the /new/ result
  is different)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929256

Pulled By: ezyang

fbshipit-source-id: c69b803d2b3a1a8aff70e14da33d3adec5239f13
2020-04-09 14:56:55 -07:00
Feng Tian
762270c51f add c10d dynamic loading mechanism and unit test (#28068)
Summary:
The original behavior of pytorch c10d only supports built-in c10d backends, such as
nccl/gloo/mpi. This patch is used to extend the c10d capability to support dynamically
loading 3rd party communication libraries which are derived from ProcessGroup base class.

related RFC is in: https://github.com/pytorch/pytorch/issues/27955

Through this way, user just need specify a 3rd party c10d backend name when invoking
torch.distributed.init_process_group(). The proposed logic will try to load corresponding
c10d backend cpp extension automatically. as for how to develop a new 3rd party c10d backend
through cpp extension, pls refer to test/cpp_extensions/cpp_c10d_extension.cpp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28068

Differential Revision: D19174838

Pulled By: agolynski

fbshipit-source-id: 3409a504a43ce7260e6f9d1207c00e87471fac62
2020-04-02 15:46:51 -07:00
Karl Ostmo
0f99b28431 Revert D20775783: Add DispatchKey impl overload; remove use of torch::dispatch
Test Plan: revert-hammer

Differential Revision:
D20775783

Original commit changeset: e45b289e5d1f

fbshipit-source-id: 08551428fa886e93cfda14eb51a0f920c335df34
2020-04-02 10:51:50 -07:00
Karl Ostmo
e67951af63 Revert D20775782: Add temporary impl_UNBOXED syntax sugar for unboxed-only defs.
Test Plan: revert-hammer

Differential Revision:
D20775782

Original commit changeset: c5e804c69f59

fbshipit-source-id: 2198e715eb3a24d198a949a44ec192bec523ffb4
2020-04-02 10:48:51 -07:00
Edward Yang
8e951c5793 Add temporary impl_UNBOXED syntax sugar for unboxed-only defs. (#35714)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35714

There are a lot of unboxed only defs.  We're committed to removing
them at the end of the half but as I am about to do a lot of porting
to the new API, let's get them into a form where they're easy to
remove.  This is a new overload impl_UNBOXED that will pass
the function pointer straight to CppFunction::makeUnboxedOnly

I don't attempt to make the _UNBOXED API complete; in particular,
catchall declarations don't get this sugar (as there are very few
of them).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20775782

Pulled By: ezyang

fbshipit-source-id: c5e804c69f5961c9d4862f6c5dbbe4c524cc32cc
2020-04-02 08:52:54 -07:00
Edward Yang
2db61193bb Add DispatchKey impl overload; remove use of torch::dispatch (#35706)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35706

It is extremely common to define implementations of operators at a
specific dispatch key, so we add an overload to impl specifically for
this case.  I then delete most uses of torch::dispatch

dispatch_autograd call sites can't make use of this overload.  So
instead the new preferred way to specify something as autograd is to
pass kAutograd as the dispatch key (short form, analogous to kCPU/kCUDA
which we support today).

I flip flopped about whether or not kAutograd should have the type
DispatchKey or some other type (to help better encapsulate the
DispatchKey enum); this is more direct and I can't think of any
BC problems from this usage.

Some other reorganization I did:
- I renamed all of the worker functions in op_registration to have
  a leading underscore and made them private, just to make it more
  clear what the public versus private API were (the private API
  shouldn't be used by users because it doesn't come with && overloads)
- In a few places where I was touching lines already, I replaced
  full DispatchKey typed out enums with shorter kFoo names, similar
  to kAutograd but I didn't publish these globally.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20775783

Pulled By: ezyang

fbshipit-source-id: e45b289e5d1f86c180b24cf14c63cf4459ab5337
2020-04-02 08:51:22 -07:00
Edward Yang
4f4ed5c108 Disable c10::import(ns) (#35398)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35398

This disables namespaced c10::import which is broken with custom
mobile op builds.  This is to help prevent people from accidentally
breaking the custom mobile build in a mysterious way; if they use
the longform version it will work.  Fixing the analyzer is tracked
in https://github.com/pytorch/pytorch/issues/35397

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20680519

Pulled By: ezyang

fbshipit-source-id: a18ac8df7e72bf399807870beedb828131273e48
2020-03-30 21:12:49 -07:00
Edward Yang
9e3605de98 [RELAND] New operator registration API (#35061) (#35629)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/35061 ; removed
the get qualified type name magic from debug strings to work around
MSVC 2017 bug.

Main points of the new API:

- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
  initializers run, you end up with the same end result.

op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface

How does this implementation proceed?  The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.

- DispatchKeyExtractor has an uninitialized state where it doesn't look
  for dispatch keys in any arguments of the stack.  It can have a
  schema (de)registered to itself post facto with
  registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
  the uninitialized state.  It can have a schema (de)registered to itself
  post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
  defs_and_impls keeps track of the outstanding impl registrations; you
  may have impl registrations but no defs.  If there are no defs (no
  schema), the operator is not returned by findSchema.  A new
  findOperatorByName fucntion unconditionally returns the OperatorHandle
  even if there's no schema.  OperatorHandle::hasSchema can be used
  to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
  interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
  'registerDef' to only return a RegistrationHandleRAII.  This is marginally
  less efficient (since we're doing two hash table lookups on a registration
  now), but this won't matter in the long term, and probably doesn't
  matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
  a bunch of places where we're improperly directly interfacing with Dispatcher;
  we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
  API.  This includes VariableType registrations (which previously
  weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
  rather than indirecting through the old API
- We deleted alias analysis kind merging entirely.  As a nod to BC, it's
  possible to define a full schema with alias analysis kind, and then
  later do another full schema def with missing alias analysis kind, but
  the opposite direction is not allowed.  We can remove this entirely
  following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
  be able to immediately schema match at the point of an impl() (because
  we don't have the schema yet).  To do this, we store the inferred
  function schema inside a KernelEntry, so we can check it when we get
  the real schema.
- Registered kernel functions now store a debug string which
  can be used to more easily identify them.  Tests use this to
  distinguish between multiple distinct registrations; regular
  invocations get only very basic information.

Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.

The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
  so that we can easily write a more complex testing harness
  using expect tests.
- For series of registrations we want to test, exhaustively
  test every possible permutation of registrations (and
  deregistrations), and show that the intermediate states
  agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
  debugging method that prints the internal state of the
  dispatcher.  This method may be generally useful for people
  who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
  checks that the internal invariants of the dispatcher are
  upheld (so we don't have to print internal implementation
  details of the dispatcher)

The testing framework found a few bugs in development.  For example,
here is a case where we registered schema too early, before checking
if it was valid:

```
Traceback (most recent call last):
  File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
    ], raises=True)
  File "test/test_dispatch.py", line 135, in commute
    results=results, raises=raises)
  File "test/test_dispatch.py", line 83, in run_permutation
    .format(ctor_order[:i], op_ix))
  File "test/test_dispatch.py", line 59, in check_invariants
    .format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
  name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
  catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
 : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```

There are also C++ smoketests for the API.  These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)

Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:

- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
  is a dict.  The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
  CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
  stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
  and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
  We now do namespacing by post facto fixing up the OperatorName
  embedded in FunctionSchema.  This also means that you can
  now do torch::import("ns1").def("ns2::blah") and have the ns2
  override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
  annotation kinds.  This meant we had to template up some function
  signatures which previously took const char*.  There's now a nice
  comment explaining this strategy.
- torch::import now takes std::string which means we can use
  the namespacing from Python

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35629

Differential Revision: D20724551

Pulled By: ezyang

fbshipit-source-id: befa46a1affb4ec4ae1fb39e3564a63695a6ca41
2020-03-29 19:48:29 -07:00
Edward Yang
227beb9095 Revert D20680520: New operator registration API
Test Plan: revert-hammer

Differential Revision:
D20680520

Original commit changeset: 5d39a28e4ec7

fbshipit-source-id: 5b2497ffc24db9a05b01d526f161bc0164f9f707
2020-03-28 14:49:56 -07:00
Edward Yang
28ab8c6ff8 New operator registration API (#35061)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35061

Main points of the new API:

- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
  initializers run, you end up with the same end result.

op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface

How does this implementation proceed?  The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.

- DispatchKeyExtractor has an uninitialized state where it doesn't look
  for dispatch keys in any arguments of the stack.  It can have a
  schema (de)registered to itself post facto with
  registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
  the uninitialized state.  It can have a schema (de)registered to itself
  post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
  defs_and_impls keeps track of the outstanding impl registrations; you
  may have impl registrations but no defs.  If there are no defs (no
  schema), the operator is not returned by findSchema.  A new
  findOperatorByName fucntion unconditionally returns the OperatorHandle
  even if there's no schema.  OperatorHandle::hasSchema can be used
  to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
  interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
  'registerDef' to only return a RegistrationHandleRAII.  This is marginally
  less efficient (since we're doing two hash table lookups on a registration
  now), but this won't matter in the long term, and probably doesn't
  matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
  a bunch of places where we're improperly directly interfacing with Dispatcher;
  we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
  API.  This includes VariableType registrations (which previously
  weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
  rather than indirecting through the old API
- We deleted alias analysis kind merging entirely.  As a nod to BC, it's
  possible to define a full schema with alias analysis kind, and then
  later do another full schema def with missing alias analysis kind, but
  the opposite direction is not allowed.  We can remove this entirely
  following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
  be able to immediately schema match at the point of an impl() (because
  we don't have the schema yet).  To do this, we store the inferred
  function schema inside a KernelEntry, so we can check it when we get
  the real schema.
- Registered kernel functions now store a debug string which
  can be used to more easily identify them.  There's some best
  effort stuff based on __FUNCSIG__ but this is only really
  capable of reporting types and not function symbols.  Tests
  use this to distinguish between multiple distinct registrations.

Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.

The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
  so that we can easily write a more complex testing harness
  using expect tests.
- For series of registrations we want to test, exhaustively
  test every possible permutation of registrations (and
  deregistrations), and show that the intermediate states
  agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
  debugging method that prints the internal state of the
  dispatcher.  This method may be generally useful for people
  who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
  checks that the internal invariants of the dispatcher are
  upheld (so we don't have to print internal implementation
  details of the dispatcher)

The testing framework found a few bugs in development.  For example,
here is a case where we registered schema too early, before checking
if it was valid:

```
Traceback (most recent call last):
  File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
    ], raises=True)
  File "test/test_dispatch.py", line 135, in commute
    results=results, raises=raises)
  File "test/test_dispatch.py", line 83, in run_permutation
    .format(ctor_order[:i], op_ix))
  File "test/test_dispatch.py", line 59, in check_invariants
    .format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
  name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
  catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
 : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```

There are also C++ smoketests for the API.  These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)

Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:

- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
  is a dict.  The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
  CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
  stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
  and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
  We now do namespacing by post facto fixing up the OperatorName
  embedded in FunctionSchema.  This also means that you can
  now do torch::import("ns1").def("ns2::blah") and have the ns2
  override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
  annotation kinds.  This meant we had to template up some function
  signatures which previously took const char*.  There's now a nice
  comment explaining this strategy.
- torch::import now takes std::string which means we can use
  the namespacing from Python

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20680520

Pulled By: ezyang

fbshipit-source-id: 5d39a28e4ec7c73fe4b1fb2222e865ab65e188f5
2020-03-28 10:52:49 -07:00
Pavel Belevich
11a40410e7 pybind11 type_caster for at::Generator and custom RNG python test (#34774)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774

This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.

This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.

`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`

Test Plan: Imported from OSS

Differential Revision: D20549451

Pulled By: pbelevich

fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
2020-03-22 10:57:35 -07:00
Edward Yang
22963f42ec Delete unnecessary aliasAnalysis specification from operator registrations. (#33093)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33093

In #30187 the aliasAnalysis field on operator registration was updated
so that alias analysis could be specified in only some registration call
sites, rather than requiring it be consistently specified in all call
sites.  With this change, we can eliminate the requirement that all
registrations specify aliasAnalysis; as long as we know *one* site
specifies the correct aliasAnalysis, we don't have to specify it
any of the other sites.

In this patch, the "one site" is TypeDefault.cpp (previously we only
generated these stub declarations for manually registered functions,
but now we generate the stubs for everything).  Then I delete aliasAnalysis
anywhere we register an op for an existing function (which is a lot
of places).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D19837897

Pulled By: ezyang

fbshipit-source-id: 26a7fbc809ec1553da89ea5c0361f3e81526d4c2
2020-02-21 14:24:44 -08:00
ashish
616beb1412 [ROCm] Added support for pytorch extensions to use HIP (#32669)
Summary:
This pull request has changes for:
1. Enabling a torch module with HIP code to be compiled by cpp_extensions.py
2. Fixes for hipify module to be able to be used by a torch extension

cc: ezyang iotamudelta jeffdaily
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32669

Differential Revision: D20033893

Pulled By: zou3519

fbshipit-source-id: fd6ddc8cdcd3930f41008636bb2bc9dd26cdb008
2020-02-21 12:10:02 -08:00
Edward Yang
9c8b67b179 Revert D19905015: Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19905015

Original commit changeset: b117e44d5552

fbshipit-source-id: a10c78aed953434f69f466bdd36f914334ba82f3
2020-02-14 13:42:29 -08:00
George Guanheng Zhang
ff5f38f53b Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19858239

Original commit changeset: f068d8505886

fbshipit-source-id: b117e44d5552e157747920d8098ce3b86a29c6bf
2020-02-14 07:35:08 -08:00
peter
946f3a9ed7 Refactor and add VS 14.16 and 2019 CI for Windows (#33117)
Summary:
Changes according to https://github.com/pytorch/pytorch/issues/18319.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33117

Differential Revision: D19858239

Pulled By: ezyang

fbshipit-source-id: f068d8505886b92c9388c9c636eab5bd20377ceb
2020-02-13 11:45:41 -08:00
Richard Zou
6209412647 Add option to use ninja to compile ahead-of-time cpp_extensions (#32495)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32495

Background
------------------------------
Previously, ninja was used to compile+link inline cpp_extensions and
ahead-of-time cpp_extensions were compiled with distutils. This PR adds
the ability to compile (but not link) ahead-of-time cpp_extensions with ninja.

The main motivation for this is to speed up cpp_extension builds: distutils
does not make use of parallelism. With this PR, using the new option, on my machine,
- torchvision compilation goes from 3m43s to 49s
- nestedtensor compilation goes from 2m0s to 28s.

User-facing changes
------------------------------

I added a `use_ninja` flag to BuildExtension. This defaults to
`True`. When `use_ninja` is True:
- it will attempt to use ninja.
- If we cannot use ninja, then this throws a warning and falls back to
distutils.
- Situations we cannot use ninja: Windows (NYI, I'll open a new issue
for this), if ninja cannot be found on the system.

Implementation Details
------------------------------

This PR makes this change in two steps. Please me know if it would be
easier to review this if I split this up into a stacked diff.
Those changes are:
1) refactor _write_ninja_file to separate the policy (what compiler flags
to pass) from the mechanism (how to write the ninja file and do compilation).
2) call _write_ninja_file and _run_ninja_build while building
ahead-of-time cpp_extensions. These are only used to compile objects;
distutils still handles the linking.

Change 1: refactor _write_ninja_file to seperate policy from mechanism
- I split _write_ninja_file into: _write_ninja_file and
_write_ninja_file_to_build_library
- I renamed _build_extension_module to _run_ninja_build

Change 2: Call _write_ninja_file while building ahead-of-time
cpp_extensions
- _write_ninja_file_and_compile_objects calls _write_ninja_file to only
build object files.
- We monkey-patch distutils.CCompiler.compile to call
_write_ninja_files_and_compile_objects
- distutils still handles the linking step. The linking step is not a
bottleneck so it was not a concern.
- This change only works on unix-based systems. Our code for windows
goes down a different codepath and I did not want to mess with that.
- If a system does not support ninja, we raise a warning and fall back
to the original compilation path.

Test Plan
------------------------------

Adhoc testing
- I built torchvision using pytorch master and printed out the build
commands. Next, I used this branch to build torchvision and looked at
the ninja file. I compared the ninja file with the build commands and
asserted that they were functionally the same.
- I repeated the above for pytorch/nestedtensor.

PyTorch test suite
- I split `test_cpp_extensions` into `test_cpp_extensions_aot` and
`test_cpp_extensions_jit`. The AOT (ahead-of-time) version tests
ahead-of-time and the JIT version tests just-in-time (not to be confused
with TorchScript)
- `test_cpp_extensions_aot` gets run TWICE by run_test.py, once with
a module that was built with ninja, and once with a module that was
built without ninja.
- run_test.py asserts that when we are building with use_ninja=True,
ninja is actually available on the system.

Test Plan: Imported from OSS

Differential Revision: D19730432

Pulled By: zou3519

fbshipit-source-id: 819590d01cf65e8da5a1e8019b8b3084792fee90
2020-02-05 18:49:29 -08:00
Pavel Belevich
9357b91180 Remove -Werror from test/cpp_extensions/setup.py (#32704)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32704

-Werror is too aggressive check for test cpp extensions because it fails even on deprecation warnings which is are included from core codebase.

Fixes #32136

Test Plan: Imported from OSS

Differential Revision: D19620190

Pulled By: pbelevich

fbshipit-source-id: 0e91566eb5de853559bb59e68a02b0bb15e7341b
2020-01-29 14:12:32 -08:00
Pavel Belevich
62b06b9fae Rename TensorTypeId to DispatchKey (#32154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32154

TensorTypeId -> DispatchKey
	c10/core/TensorTypeId.h -> c10/core/DispatchKey.h
	c10/core/TensorTypeId.cpp -> c10/core/DispatchKey.cpp
	TensorTypeId::* -> DispatchKey::*
	TensorTypeId type_id -> DispatchKey dispatch_key
		type_id -> dispatch_key
	TensorTypeId::NumTensorIds -> DispatchKey::NumDispatchKeys
	RealTensorTypeId -> RealDispatchKey
TensorTypeSet -> DispatchKeySet
	TensorTypeIds -> DispatchKeys
	c10/core/TensorTypeSet.h -> c10/core/DispatchKeySet.h
	c10/core/TensorTypeSet.cpp -> c10/core/DispatchKeySet.cpp
	type_set() -> key_set()
	type_set_ -> key_set_
	typeSet -> keySet
ExcludeTensorTypeIdGuard -> ExcludeDispatchKeyGuard
IncludeTensorTypeIdGuard -> IncludeDispatchKeyGuard
LocalTensorTypeSet -> LocalDispatchKeySet
	c10/core/impl/LocalTensorTypeSet.h -> c10/core/impl/LocalDispatchKeySet.h
	c10/core/impl/LocalTensorTypeSet.cpp -> c10/core/impl/LocalDispatchKeySet.cpp
	tls_local_tensor_type_set -> tls_local_dispatch_key_set
	tls_is_tensor_type_id_excluded -> tls_is_dispatch_key_excluded
	tls_set_tensor_type_id_excluded -> tls_set_dispatch_key_excluded
	tls_is_tensor_type_id_included -> tls_is_dispatch_key_included
	tls_set_tensor_type_id_included -> tls_set_dispatch_key_included
MultiDispatchTensorTypeSet -> MultiDispatchKeySet
	multi_dispatch_tensor_type_set -> multi_dispatch_key_set
tensorTypeIdToBackend -> dispatchKeyToBackend
backendToTensorTypeId -> backendToDispatchKey
initForTensorTypeSet -> initForDispatchKeySet
inferred_type_set -> inferred_key_set
computeTensorTypeId -> computeDispatchKey
PODLocalTensorTypeSet raw_local_tensor_type_set -> PODLocalDispatchKeySet raw_local_dispatch_key_set
get_default_tensor_type_id -> get_default_dispatch_key
inferred_type_id -> inferred_dispatch_key
actual_type_id -> actual_dispatch_key
typeSetToDispatchKey_ -> dispatchKeySetToDispatchKey_
get_type_id() -> get_dispatch_key()
legacyExtractTypeId -> legacyExtractDispatchKey
extractTypeId -> extractDispatchKey

Test Plan: Imported from OSS

Differential Revision: D19398900

Pulled By: pbelevich

fbshipit-source-id: 234ad19f93d33e00201b61e153b740a339035776
2020-01-15 11:16:08 -08:00
Nathan Goldbaum
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
peter
e870a9a870 More checks on MSVC (#29709)
Summary:
The flags `/sdl` and `/permissive-` are switched on automatically when using the VS GUI. Adding those checks will ensure that those annoying errors won't appear when users use the VS GUI to build their project.

More info:
https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/permissive-standards-conformance?view=vs-2017
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29709

Differential Revision: D18473888

Pulled By: bddppq

fbshipit-source-id: 21156b0232a5dc3b566d14491d00bacb11493254
2019-11-13 00:15:40 -08:00
Sebastian Messmer
01aea1f268 Delete ATenDispatch (#28468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28468

We don't need this anymore.
ghstack-source-id: 92595388

Test Plan: unit tests

Differential Revision: D18073339

fbshipit-source-id: d0ef1332c83e47117fe0a5eadc8faedb259cfba0
2019-10-24 22:15:00 -07:00
Sebastian Messmer
ee920b92c4 Move complex extension test to c10 (#28208)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28208

Backend extensions should call torch::RegisterOperators, not globalATenDispatch().
If the op is still on globalATenDispatch, then torch::RegisterOperators will do the right thing and forward it to globalATenDispatch.
ghstack-source-id: 92436988

Test Plan: waitforsandcastle

Differential Revision: D17975369

fbshipit-source-id: 0d4bd5e4e5b86e6dcfba527a7d11c25508896ac1
2019-10-23 01:33:47 -07:00
Edward Yang
b56ad744a2 Delete backwards compatibility Backend overload for registerOp (#25914)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25914

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17284083

Pulled By: ezyang

fbshipit-source-id: 430ac7ea2bd042b1f4bb874e53679d0fde326dec
2019-09-25 07:21:44 -07:00
Sebastian Messmer
8321f2592e Register ATen ops with c10 (#26131)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26131

Changes in this PR:
- For each operator with use_c10_dispatcher: True, additionally generate a c10 registration line in TypeDefault.cpp, CPUType.cpp, and other backend files.
- This doesn't change globalATenDispatch yet, the c10 registration is purely additional and the operator calling path doesn't change. A diff further up the stack will change these things.
- Enable the use_c10_dispatcher: True flag for about ~70% of operators
- This also changes the c10->jit operator export because ATen ops are already exported to JIT directly and we don't want to export the registered c10 ops because they would clash
- For this, we need a way to recognize if a certain operator is already moved from ATen to c10, this is done by generating a OpsAlreadyMovedToC10.cpp file with the list. A diff further up in the stack will also need this file to make sure we don't break the backend extension API for these ops.

Reasons for some ops to be excluded (i.e. not have the `use_c10_dispatcher` flag set to true):
- `Tensor?(a!)` (i.e. optional tensor with annotations) not supported in c++ function schema parser yet
- `-> void` in native_functions.yaml vs `-> ()` expected by function schema parser
- out functions have different argument order in C++ as in the jit schema
- `Tensor?` (i.e. optional tensor) doesn't work nicely with undefined tensor sometimes being undefined tensor and sometimes being None.
- fixed-size arrays like `int[3]` not supported in c10 yet

These will be fixed in separate diffs and then the exclusion tag will be removed.
ghstack-source-id: 90060748

Test Plan: a diff stacked on top uses these registrations to call these ops from ATen

Differential Revision: D16603131

fbshipit-source-id: 315eb83d0b567eb0cd49973060b44ee1d6d64bfb
2019-09-13 13:52:40 -07:00
Mike Ruberry
a024e1e091 Creates Torch-friendly Event class and adds Stream tracking to autograd (#25130)
Summary:
Resubmission of https://github.com/pytorch/pytorch/issues/23424 because previous PR was borked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25130

Test Plan: Two tests were added to cuda_stream_test for this functionality.

Differential Revision: D17145538

Pulled By: mruberry

fbshipit-source-id: 2546c5907c038412e03aa0d3328a972b0164c455
2019-09-01 12:37:52 -07:00