[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Approved by: https://github.com/ezyang
Test Plan:
contbuild & OSS CI, see e444cd24d4
Rollback Plan:
Differential Revision: D80435179
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159197
Approved by: https://github.com/ezyang
Summary:
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.
sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.
ex:
bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.
In this PR I only handle default contiguity, will follow up with changes for other formats like channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Test Plan:
contbuild & OSS CI,
Rollback Plan:
Reviewed By: malfet
Differential Revision: D77639021
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157472
Approved by: https://github.com/aorenste
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.
sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.
ex:
bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.
In this PR I only handle default contiguity, will follow up with changes for other formats like channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.
sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.
ex:
bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.
In this PR I only handle default contiguity, will follow up with changes for other formats like channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
Fixes https://github.com/pytorch/pytorch/issues/134798
In the regular Tensor case, when you call Tensor.data, there's a check
for if inference mode is active. If it is active, then we don't set the
version counter. We replicate this check for Tensor Subclasses (the bug
was we were trying to set the version counter on a FakeTensor in
inference_mode).
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134878
Approved by: https://github.com/bdhirsh
tensorA.data = tensorB will call shallow_copy_from function to copy tensorB metadata and storage to tensorA metadata and storage. If tensorB extra_meta_ is nullptr,then tensorA extra_meta_ still keep in tensorA. This will contaminate new meta data in tensorA.
@ezyang @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127616
Approved by: https://github.com/ezyang
Currently whenever the sizes or strides are modified for a `TensorImpl` we
eagerly recompute the numel and memory format flags. This is fine for static
shapes as it's all fast C++ code, but for symbolic shapes it runs slow python code.
This instead changes the `SymbolicShapeMeta` object to compute the derived
quantities lazily at the first request. This has the added benefit that we can
now pass assumptions in `empty_tensor_restride` which remove the need to compute
some contiguity flags at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112785
Approved by: https://github.com/ezyang
ghstack dependencies: #112689, #112890
This should be the last of the "it used to work with static shapes but
it doesn't work with dynamic shapes" hard errors. Now we will just
specialize if you hit it from C++.
The strategy here is a bit clever. We shunt the size() call to Python
binding if an error would have occurred. Importantly, we already have
logic to make sure the newly allocated ints stay live for the duration
of the ArrayRef access.
storage_offset is intentionally omitted because there are some problems
with it. I will fix them next.
This should let us get rid of the aotautograd_static test configuration.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111935
Approved by: https://github.com/zou3519
In cudagraph trees, we invalidate tensors at some point and drop their storage. Then, when they are accessed with .data_ptr(), a custom error message is thrown. Previously, this invalidation didn't also make untyped_storage()/storage() error which could result in a segfault.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109750
Approved by: https://github.com/zou3519
Unlike TORCH_CHECK, these always show C++ stacktrace on error. Put it
on errors where you frequently seem to need this information.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109373
Approved by: https://github.com/bdhirsh
ghstack dependencies: #109372