Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.
We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).
The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248
Reviewed By: astaff
Differential Revision: D30344992
Pulled By: albanD
fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57386
Here is the PR for what's discussed in the RFC https://github.com/pytorch/pytorch/issues/55374 to enable the autocast for CPU device. Currently, this PR only enable BF16 as the lower precision datatype.
Changes:
1. Enable new API `torch.cpu.amp.autocast` for autocast on CPU device: include the python API, C++ API, new Dispatchkey etc.
2. Consolidate the implementation for each cast policy sharing between CPU and GPU devices.
3. Add the operation lists to corresponding cast policy for cpu autocast.
Test Plan: Imported from OSS
Reviewed By: soulitzer
Differential Revision: D28572219
Pulled By: ezyang
fbshipit-source-id: db3db509973b16a5728ee510b5e1ee716b03a152
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830
Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.
Test Plan: CI
Reviewed By: zertosh
Differential Revision: D27979080
fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973
Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.
The first part is restoring the concept of storage to meta tensors. Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:
* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).
The second part is adding more support for the most used functions in the test suite.
* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.
Getting more meta function support triggers a number of bugs in the test suite, which I then fix:
- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D27036572
Test Plan: Imported from OSS
Reviewed By: agolynski, bdhirsh
Pulled By: ezyang
fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54470
```
git grep -l 'DefaultBackend' | xargs sed -i 's/DefaultBackend/CompositeExplicitAutograd/g'
```
Plus a quick fixup in native/README.md
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27253240
Pulled By: ezyang
fbshipit-source-id: 964df951ea8b52fa72937f3cc66aeaf49a702e6f
Summary:
Kernels such as "add" are registered to DefaultBackend. At a minimum NestedTensor is not compatible with structured kernels due to missing fields such as size, which can therefore cause difficult to catch bugs when being passed into a function without a NestedTensor-specific kernel.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54559
Reviewed By: ezyang
Differential Revision: D27283591
Pulled By: cpuhrsch
fbshipit-source-id: fad7c03ca3b2190f2f90039dd2872184e9bc5049
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54466
I had to very carefully audit all the use sites since there are a lot
of other uses of the string Math; I did most of the conversion by
grepping for all occurrences of Math and then doing a search
replace.
I also updated documentation for clarity.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27253239
Pulled By: ezyang
fbshipit-source-id: afb485d07ff39575742a4f0e1e205179b60bc953
Summary:
Apple recently announced ML Compute, a new framework available in macOS Big Sur, which enables users to accelerate the training of neural networks on Mac hardware. This PR is the first on a series of PRs that will enable the integration with ML Compute. Most of the integration code will live on a separate subrepo named `mlc`.
The integration with `mlc` (ML Compute) will be very similar to that of xla. We rely on registering our ops through:
TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
m.impl_UNBOXED(<op_schema_name>, &customized_op_kernel)
...
}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50634
Reviewed By: malfet
Differential Revision: D26614213
Pulled By: smessmer
fbshipit-source-id: 3b492b346c61cc3950ac880ac01a82fbdddbc07b
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.
https://github.com/pytorch/pytorch/issues/48246
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786
Reviewed By: mrshenli
Differential Revision: D25893962
Pulled By: ezyang
fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
Summary:
This adds a dedicated dispatch key for the [nestedtensor project](https://github.com/pytorch/nestedtensor).
- [ ] Since this isn't a device or a backend, does this need further updates in other places other than DispatchKey.h?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44668
Reviewed By: zhangguanheng66, ailzhang
Differential Revision: D23998801
Pulled By: cpuhrsch
fbshipit-source-id: 133b5a9a04c4f61c27c0728832da09e4b38a5939
Summary:
This PR moves `DispatchKey::Autograd` to an alias dispatch key mapping to `AutogradCPU, AutogradCUDA, AutogradXLA, AutogradOther, AutogradPrivate*` keys.
A few things are handled in this PR:
- Update alias dispatch key mapping and precompute dispatchTable logic
- Move `Autograd` key from `always_included` set to TensorImpl constructor.
- Update `dummyTensor` constructor to take `requires_grad` as optional argument so that it's closer to the real application in op_registration_test.
- Use `BackendSelect` key for both backend select before and after autograd layer. (1 liner in backend_select codegen)
A few planned followups ordered by priority:
- [cleanup] Update `test_dispatch.py` to include testing `Autograd`.
- [cleanup] Add Math alias key and move catchAll to Math. (to remove 2.2 in `computeDispatchTableEntryWithDebug`)
- [new feature] Add support for Math in native_functions.yaml
- [cleanup] Add iterator like functionality to DispatchKeySet
- [cleanup/large] Only add Autograd backend keys when tensor requires grad. (cc: ljk53 ?)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43070
Reviewed By: ezyang
Differential Revision: D23281535
Pulled By: ailzhang
fbshipit-source-id: 9ad00b17142e9b83304f63cf599f785500f28f71
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32728
It doesn't have much to do with tensors anymore.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D19628093
Pulled By: ezyang
fbshipit-source-id: 4d57111cdf44ba347bec8a32bb5b4b47a83c1eaf