At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/
It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
This is important because if a replacement has happened during inductor lowering, we may have stale symbols in sympy expressions that we need to replace away. Do this at the very end.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127543
Approved by: https://github.com/lezcano
Before, when calling ops.where, masks were not properly propagated. We
now restrict the optimisation to `ops.masked`, which I think it was what
the original code intended to do.
I'm not 100% sure that even in the masked case this code is not
introducing some bugs, but this is a strict improvement over the
previous state.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125574
Approved by: https://github.com/peterbell10
ghstack dependencies: #114471, #126783
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This pass was broken in a number of ways, as we were not generating
asserts whenever we took it, even though we need to. While doing so,
we found that the analysis we were using for choosing
whether to generate asserts or not for dynamic shapes was completely
broken.
Eliminating indirect indexing in this way allows for a number of optimisations.
In particular, we can now fuse against these kernels (indirect indexing disallows fusions).
The new strategy is as follows:
- We always propagate sympy expressions if we can.
- If an expression was an indirect_indexing, we call `check_bounds`
- We also call `check_bounds` within `CSEProxy.indirect_indexing`
- The checks are issued in the buffer where they would go if the were used in a load
- This makes them always be codegen'd before the load and stores
- In the case of stores, they will be generated potentially much earlier than the stores themselves, which is fine.
We add quite a few asserts to preexisting tests to strengthen them. In particular, we make sure
that issuing an assert plays well with all kinds of C++ vectorisation.
For now, we rely on the logic within `_maybe_evaluate_static` to prove
these bounds. This logic is rather limited though. In the future, we might want
to rely on Z3 here to be able to prove bounds in a more general way.
Supersedes https://github.com/pytorch/pytorch/pull/113068
Fixes https://github.com/pytorch/pytorch/issues/121251
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114471
Approved by: https://github.com/peterbell10
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
The big idea is that floats are treated as Tensors on input/output to the FX graph, but on the inside, we immediately call item() on the synthetic Tensor and record regular float operations on it. Canonicalization to Tensor operations will happen in a standalone FX pass. This behavior is controlled by `specialize_float` config variable when set to False.
The generated graph looks like this for the test `test_unspec_float_output`:
```
def forward(self, L_x_: "f32[3]", L_y_: "f32[]"):
l_x_ = L_x_
l_y_ = L_y_
# File: /data/users/ezyang/a/pytorch/test/dynamo/test_unspec.py:511 in f, code: return x + 1, y * 2
add: "f32[3]" = l_x_ + 1; l_x_ = None
item: "Sym(zf0)" = l_y_.item(); l_y_ = None
mul: "Sym(2*zf0)" = item * 2; item = None
scalar_tensor: "f32[]" = torch.scalar_tensor(mul); mul = None
return (add, scalar_tensor)
```
The ingredients:
* **torch/_dynamo/variables/builder.py** When `specialize_float` is False, we wrap float literals with `wrap_symfloat`. This is an unholy mashup of `wrap_symint` and `wrap_unspecialized_primitive`. The overall strategy is that we first generate a tensor argument (because that's what we want to show up into the FX graph), but then immediately call item() on the tensor argument to get a SymNodeVariable, which we will do the rest of the tracing with. Importantly, this SymNodeVariable is backed with the source of the original float: this means we can guard on the resulting value (something we could NOT do with UnspecializedPythonVariable). This has to be done manually, because if you literally call item() on the tensor, you will end up with an unbacked float. There is a bit of copy paste from wrap_symint and wrap_unspecialized_primitive which we can try to factor out, but this really is its own thing and you should review every line of code in the function.
* **torch/fx/experimental/symbolic_shapes.py** We now can generate guards on float inputs, and these guards are handled inside of ShapeEnv. So we need to be able to allocate (backed!) float symbols, and produce guards for them. Fairly straightforward generalization.
* **torch/_dynamo/codegen.py** I also need to maintain the invariant that there are no float outputs to the FX graph. I chose to do this at codegen time. When we detect a SymNodeVariable on the return stack for a float, we on the fly convert it (via `as_tensor`) to a TensorVariable, which is the true output. We then special case the output bytecode to call item() on it again. The tensor conversion is memoized on SymNodeVariable since we typically run the code generation process twice.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125325
Approved by: https://github.com/lezcano, https://github.com/jansel
This provides utilities for creating and querying properties on
sympy.Symbol. I want to use this refactor to get a better handle on how
the 's' prefix is being used in Inductor. To start, I only do
symbolic_shapes code because that's what I'm familiar with.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125395
Approved by: https://github.com/Skylion007
This doesn't entirely fix the original problem that prompted this, but
it seems to just be getting stuck in export constraint formatting now
which seems like progress to me.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122827
Approved by: https://github.com/avikchaudhuri
As the design in RFC https://github.com/pytorch/pytorch/issues/114856, this PR implemented Intel GPU Inductor backend by:
- Reuse WrapperCodegen and TritonScheduling for python wrapper and kernel code generation. And implenented device-specific code generation in XPUDeviceOpOverrides
- Reuse fx_pass, lowering, codecache, triton kernel auto-tuning, and compilation.
For the test case, this PR provided test/inductor/test_xpu_basic.py for basic inductor backend functionality testing.
We'll reuse all the existing Inductor test case in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121895
Approved by: https://github.com/EikanWang, https://github.com/jansel, https://github.com/desertfire
Currently scan has an `init` argument which must be the identity of the
combine function. This isn't strictly necessary if we are more careful about
keeping track of the first element and avoid combining it with anything.
This does additionally require that there are no active load masks, since we can't
do the `where_cond` any more. However, this shouldn't be possible anyway since
scans are always realized and only fused via the scheduler.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119727
Approved by: https://github.com/lezcano
Sympy simplifications don't obey floating point semantics, so don't
use Sympy for this. Keep them as is, only evaluate with the reference
implementations when all arguments are known.
This may end up getting subsumed by some other changes later, but I
wanted to understand if this was easy and it seems to be easy.
This doesn't actually depend on the earlier diffs on the stack and I can detach it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122823
Approved by: https://github.com/lezcano