Commit Graph

13 Commits

Author SHA1 Message Date
Xuehai Pan
3b798df853 [BE][Easy] enable UFMT for torch/distributed/{fsdp,optim,rpc}/ (#128869)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128869
Approved by: https://github.com/fegin
ghstack dependencies: #128868
2024-06-18 21:49:08 +00:00
Aaron Orenstein
7c12cc7ce4 Flip default value for mypy disallow_untyped_defs [6/11] (#127843)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127843
Approved by: https://github.com/oulgen
ghstack dependencies: #127842
2024-06-08 18:49:29 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
Xu Zhao
eaa993a2e0 Add type annotations to torch._C._distributed_rpc module. (#46624)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46624

Test Plan: Imported from OSS

Reviewed By: glaringlee

Differential Revision: D24761656

Pulled By: xuzhao9

fbshipit-source-id: b55aee5dd2b97f573a50e5bbfddde7d984943fec
2020-11-06 01:28:51 -08:00
Shen Li
8e47fcba5f Update docs for RPC async_execution (#45458)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45458

Test Plan: Imported from OSS

Reviewed By: pritamdamania87

Differential Revision: D23973366

Pulled By: mrshenli

fbshipit-source-id: 3697f07fa972db21746aa25eaf461c1b93293f58
2020-09-28 20:48:12 -07:00
Shen Li
cce7680a23 Add bound method tests for async_execution with RRef helper (#44716)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44716

Test Plan: Imported from OSS

Reviewed By: rohan-varma

Differential Revision: D23707326

Pulled By: mrshenli

fbshipit-source-id: a2f8db17447e9f82c9f6ed941ff1f8cb9090ad74
2020-09-16 12:01:07 -07:00
wudenggang
9600ed9af3 typo fixes (#41632)
Summary:
typo fixes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41632

Reviewed By: ezyang

Differential Revision: D22617827

Pulled By: mrshenli

fbshipit-source-id: c2bfcb7cc36913a8dd32f13fc9adc3aa0a9b682f
2020-07-20 07:23:00 -07:00
Shen Li
521722751f Add examples and tests for combining static/class method with async execution (#40619)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40619

Test Plan: Imported from OSS

Differential Revision: D22258407

Pulled By: mrshenli

fbshipit-source-id: 036d85a2affc4505efd2df197fc513dba010e359
2020-06-27 20:42:23 -07:00
Shihao Xu
0ecea2d64d [JIT x RPC] Consolidate Future type class and Future impl class (#40406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40406

Same motivation for https://github.com/pytorch/pytorch/issues/35110.

`Future` and `RRef` are two important types for `rpc` module, should make users feel easy to use.

Reference, https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#directive-autoclass

Follow https://github.com/pytorch/pytorch/pull/35694.
ghstack-source-id: 106484664

Test Plan:
```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork && \
buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par \
-r test_rref_local_value
```

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/tensorpipe:rpc_fork_tensorpipe
```

pyre -l caffe2/torch/fb/training_toolkit
pyre -l caffe2/torch/fb/distributed
pyre -l aiplatform

Differential Revision: D7722176

fbshipit-source-id: f3b9ccd7bccb233b2b33ad59dd65e178ba34d67f
2020-06-24 01:44:49 -07:00
Shen Li
314d645e05 Add a warning to mention that async_execution does not work with autograd profiler (#40309)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40309

Test Plan: Imported from OSS

Differential Revision: D22145130

Pulled By: mrshenli

fbshipit-source-id: d6f7250e53648d6939367f1ad4c9b898be00afed
2020-06-19 15:35:00 -07:00
Shen Li
caf0c286b8 Fix RPC API doc links (#40299)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40299

Test Plan: Imported from OSS

Differential Revision: D22143156

Pulled By: mrshenli

fbshipit-source-id: c11848ebfe8863d59509a0fbc042eed71a58e514
2020-06-19 15:34:53 -07:00
Shen Li
67cea74dd3 Add rpc.async_function decorator for TorchScript functions (#39267)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39267

When combined with `torch.jit.script`, the order of decorators matter.
`rpc.functions.async_execution` must be the outmost one. The
`async_execution` decorator will store the TorchScript function in
attribute `_wrapped_async_rpc_function` on the wrapper function, and
pass this wrapped TorchScript function (i.e., an instance of
`torch.jit.ScriptFunction`) to RPC. The caller will mark the ScriptCall
with `isAsyncExecution=true`, and the callee will extract the returned
`Future` in C++ and install subsequent processing as a callback to
that `Future`.

Test Plan: Imported from OSS

Differential Revision: D21792688

fbshipit-source-id: de095eb148d21e9114a478e9e6047c707d34fd07
2020-06-03 22:27:15 -07:00
Shen Li
a05ef17e46 Add rpc.functions.async_execution decorator for rpc_sync/rpc_async (#39216)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39216

The `rpc.functions.async_execution` decorator specifies that the
wrapped function is guaranteed to return a `torch.futures.Future`.
The decorator adds a `_wrapped_async_rpc_function` attribute to
the wrapper function. The caller retrieves this information and
then sets `isAsyncFunction` argument accordingly which is later
added to PythonCall RPC message as a field. On the callee side,
if the PythonCall carries an asynchronous function, it will cast
the function's return value to a jit::PythonFutureWrapper object,
and then install response creation and communication as a callback
on the that jit::PythonFutureWrapper.

For applications, this feature is useful when a function needs to
wait for IO or additional singaling. In those cases, marking the
user function as `rpc.functions.async_execution` will prevent it
from blocking one thread on callee for too long.

Test Plan: Imported from OSS

Reviewed By: rohan-varma

Differential Revision: D21779962

fbshipit-source-id: 6b6aa698bf6f91dad6ed2a7ee433df429b59e941
2020-06-02 23:21:25 -07:00