mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
4ee514144b
8 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
4ee514144b |
[c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
y = x * x
req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(req, torch.distributed.Work)
return y
@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
torch.ops.c10d_functional.wait_tensor(y)
return y * y
x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
y = all_reduce_eager(x)
z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.
This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.
----
**Update**: Did two items to prevent regression to existing use cases:
1. Added memory-stressed test case to test_c10d_nccl.py `test_unwaited` to cover existing user's "not calling work.wait() for non-functional collective" use case
2. Gated all new `register_work()` / `unregister_work()` calls with `c10d::allow_inflight_collective_as_graph_input()` check, which is a new context manager that requires explicit user enablement (i.e. not on by default, so should not affect existing users).
The risk of this new version of PR causing regression should be very low.
------
Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`
------
Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
|
||
|
|
e5595f10c8 |
Revert "[c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)"
This reverts commit
|
||
|
|
a688c57033 |
[c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
y = x * x
req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(req, torch.distributed.Work)
return y
@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
torch.ops.c10d_functional.wait_tensor(y)
return y * y
x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
y = all_reduce_eager(x)
z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.
This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.
------
Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`
------
Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
|
||
|
|
e7f1e306df |
Revert "[c10d][Partial-Graph Overlap] Support calling .wait_tensor() within compiled region on output tensor of eager async_op=True collective (#137763)"
This reverts commit
|
||
|
|
362ca54f03 |
[c10d][Partial-Graph Overlap] Support calling .wait_tensor() within compiled region on output tensor of eager async_op=True collective (#137763)
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
y = x * x
req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(req, torch.distributed.Work)
return y
@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
torch.ops.c10d_functional.wait_tensor(y)
return y * y
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.
This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.
------
Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_work_registry`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_work_registry`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`
------
Differential Revision: [D64511994](https://our.internmc.facebook.com/intern/diff/D64511994)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
|
||
|
|
a136a7d623 |
[Functional Collective] enable custom work registration from python (#130354)
This PR does two things: - Allow tensor -> work registration in Python via `torch._C._distributed_c10d.register_work`. Calling `torch.ops._c10d_functional.wait_tensor` on a tensor would trigger `.wait()` on the registered work object. - Allow user-defined work object in Python to work with functional collectives. Pull Request resolved: https://github.com/pytorch/pytorch/pull/130354 Approved by: https://github.com/wanchaol, https://github.com/fegin, https://github.com/wconstab |
||
|
|
5086e1cf3f |
Remove distributed/c10d/Functional.hpp (#119138)
This file is useless and was accidentally checked in. Pull Request resolved: https://github.com/pytorch/pytorch/pull/119138 Approved by: https://github.com/Skylion007 |
||
|
|
ec18ef62f4 |
Native c10d_functional ops (#110570)
This PR introduces a native version of c10d_functional ops. The main goal is to add collective support in AOTInductor and allow collective ops to work in multi-threaded native runtimes. The native version also incorporated API improvements we wished to implement in Python c10d_functional: - Removed `ranks` and `group_size` from collective op signatures which were proven to be redundant. - Use tensor storage as opposed to `void*` to resolve in-flight work. The native process group registration/resolution mechansim is only used for native c10d_functional in the PR. It will become the single source of truth in upcoming PRs. The upcoming PRs will implement Inductor/AOTInductor support for c10d_functional, after which native c10d_functional will replace Python c10d_functional. Pull Request resolved: https://github.com/pytorch/pytorch/pull/110570 Approved by: https://github.com/wanchaol |