Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69534
Something is TensorSubclassLike if it is a Tensor subclass or if it has
the same problems as Tensor subclasses. Today that just includes Tensor
Subclasses and meta tensors but may include other things in the future.
Some of our backwards formulas are incompatible with TensorSubclassLike
objects. For example, calling .data_ptr() is a problem because many
TensorSubclassLike objects don't have storage. Another problem is
in-place operations: performing `regular_tensor.inplace_(tensor_subclass)`
is a problem.
This PR adds special cases to the backward formulas for torch.max and
torch.clamp to handle this. The backward formulas for torch.max and
torch.clamp are not dispatcher operations so they cannot be overridden
and we hesitate to make them dispatcher operations for FC/BC concerns
and performance overhead concerns.
Furthermore, the old concept of "is this inplace operation vmap
compatible?" can be subsumed by the general "is this inplace operation
tensor-subclass compatible" question, so I replaced all instances of
isInplaceVmapCompatible and replaced it with the isTensorSubclassLike
checks.
Test Plan
- I tested the changes using functorch.
- It's possible to write a test for these in core (one has to make
a custom tensor subclass and then send it through the operation and then
invoke autograd), but I wanted to push the work to doing some
generic testing for backward formulas
(https://github.com/pytorch/pytorch/issues/69530) instead of doing some
one-off things now.
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D32967727
Pulled By: zou3519
fbshipit-source-id: 30fda1a7581da4c55179b7a3ca05069150bbe2dc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63570
There is a use of `at::triangular_solve_out` in the file
`torch/csrc/jit/tensorexpr/external_functions.cpp` that I have not dared
to move to `at::linalg_solve_triangular_out`.
**Deprecation note:**
This PR deprecates the `torch.triangular_solve` function in favor of
`torch.linalg.solve_triangular`. An upgrade guide is added to the
documentation for `torch.triangular_solve`.
Note that it DOES NOT remove `torch.triangular_solve`, but
`torch.triangular_solve` will be removed in a future PyTorch release.
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D32618035
Pulled By: anjali411
fbshipit-source-id: 0bfb48eeb6d96eff3e96e8a14818268cceb93c83
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63569
This PR also rewrites `lu_solve_backward` from scratch going from
solving 5 systems of equations to just 2.
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D32618014
Pulled By: anjali411
fbshipit-source-id: 0e915bcf7045a4db43ffd076d807beac816c8538
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66933
This PR exposes `torch.lu` as `torch.linalg.lu_factor` and
`torch.linalg.lu_factor_ex`.
This PR also adds support for matrices with zero elements both in
the size of the matrix and the batch. Note that this function simply
returns empty tensors of the correct size in this case.
We add a test and an OpInfo for the new function.
This PR also adds documentation for this new function in line of
the documentation in the rest of `torch.linalg`.
Fixes https://github.com/pytorch/pytorch/issues/56590
Fixes https://github.com/pytorch/pytorch/issues/64014
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D32521980
Pulled By: mruberry
fbshipit-source-id: 26a49ebd87f8a41472f8cd4e9de4ddfb7f5581fb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568
This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.
This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.
This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.
Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.
We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.
Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32588230
Pulled By: mruberry
fbshipit-source-id: 69e484849deb9ad7bb992cc97905df29c8915910
Summary:
Adds native_dropout to have a reasonable target for torchscript in auto diff. native_dropout has scale and train as arguments in its signature, this makes native_dropout more consistent with other operators and removes conditionals in the autodiff definition.
cc gmagogsfm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63937
Reviewed By: mruberry
Differential Revision: D32477657
Pulled By: ngimel
fbshipit-source-id: d37b137a37acafa50990f60c77f5cea2818454e4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568
This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.
This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.
This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.
Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.
We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.
Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: zou3519, JacobSzwejbka
Differential Revision: D32283178
Pulled By: mruberry
fbshipit-source-id: deb672e6e52f58b76536ab4158073927a35e43a8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64181
This PR replaces all the calls to:
- `transpose(-2, -1)` or `transpose(-1, -2)` by `mT()` in C++ and `mT` in Python
- `conj().transpose(-2, -1)` or `transpose(-2, -1).conj()` or `conj().transpose(-1, -2)` or `transpose(-1, -2).conj()` by `mH()` in C++ and `mH` in Python.
It also simplifies two pieces of code, and fixes one bug where a pair
of parentheses were missing in the function `make_symmetric_matrices`.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D31692896
Pulled By: anjali411
fbshipit-source-id: e9112c42343663d442dc5bd53ff2b492094b434a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50209
This adds a new warning handler that stores all warnings in a shared
queue, which can be "replayed" at a later time and, crucially, on
another thread. Then, I use this inside the autograd engine to ensure
that warnings are processed by the handler registered on the main
thread.
For testing, I also add an operator that always warns in the backward
pass and test that the warning is a normal Python warning.
cc ezyang albanD zou3519 gqchen pearu nikitaved soulitzer Lezcano Varal7
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66235
Reviewed By: ejguan
Differential Revision: D31505413
Pulled By: albanD
fbshipit-source-id: 1a7f60b038f55c20591c0748b9e86735b3fec2f9
Summary:
This PR adds forward AD for `*_solve` methods.
Additionally, `cholesky_solve` gets OpInfo + a bug fix when wrong leading dimensions could be passed to LAPACK,
and `lu_solve` gets forward AD with 2x`lu_solve` instead of 1x`lu_solve` + 2x`triangular_solve`.
cc ezyang albanD zou3519 gqchen pearu nikitaved soulitzer Lezcano Varal7 jianyuh mruberry walterddr IvanYashchuk xwang233
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65546
Reviewed By: dagitses
Differential Revision: D31431847
Pulled By: albanD
fbshipit-source-id: 0e343e0d9da3c3d2051fca215fad289d77275251
Summary:
Reland of https://github.com/pytorch/pytorch/pull/65242
The last attempt of the reland automatically rebased onto stable, which did not yet have the revert commit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66018
Reviewed By: albanD
Differential Revision: D31348822
Pulled By: soulitzer
fbshipit-source-id: 881d701b404530c1352ac9245bd67264e1652b8a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/64000
- updates double backward formula to compute grad wrt output instead of self
- ~~In some of the error messages, we still refer to the dtype of the input, even though we are now checking the dtype of the output~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65242
Reviewed By: albanD
Differential Revision: D31238123
Pulled By: soulitzer
fbshipit-source-id: afd319d3676d9ef8d81607e0e8c2a3e6d09f68e4
Summary:
This PR adds forward AD for `*_solve` methods.
Additionally, `cholesky_solve` gets OpInfo + a bug fix when wrong leading dimensions could be passed to LAPACK,
and `lu_solve` gets forward AD with 2x`lu_solve` instead of 1x`lu_solve` + 2x`triangular_solve`.
cc ezyang albanD zou3519 gqchen pearu nikitaved soulitzer Lezcano Varal7 jianyuh mruberry walterddr IvanYashchuk xwang233
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65546
Reviewed By: gchanan
Differential Revision: D31206837
Pulled By: albanD
fbshipit-source-id: 040beda97442e7a88a9df9abc7bb18313ce55bc3
Summary:
This PR adds forward mode differentiation for `torch.linalg.eigh` and a few other functions required for tests to pass.
For some reason running tests for `torch.linalg.eigvalsh` and complex `torch.linalg.eigh` hangs. These tests are skipped for now.
cc ezyang albanD zou3519 gqchen pearu nikitaved soulitzer Lezcano Varal7 jianyuh mruberry heitorschueroff walterddr IvanYashchuk xwang233
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62163
Reviewed By: jbschlosser
Differential Revision: D30903988
Pulled By: albanD
fbshipit-source-id: d6a74adb9e6d2f4be8ac707848ecabf06d629823
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63330
- This is in preparation for templated/boxed autograd-not-implemented fallback
- Make sure VariableTypeUtils does not depend on generated code
- Lift `isFwGradDefined` into `autograd/functions/utils.cpp` so it's available to mobile builds
- Removes `using namespace at` from VariableTypeUtils, previously we needed this for Templated version, but now its not strictly necessary but still a good change to avoid name conflicts if this header is included elsewhere in the future.
Test Plan: Imported from OSS
Reviewed By: heitorschueroff
Differential Revision: D30518573
Pulled By: soulitzer
fbshipit-source-id: a0fb904baafc9713de609fffec4b813f6cfcc000
Summary:
1. extend autodiff by adding entry for layer_norm in symbolic script, we now use native_layer_norm_backward
2. added backward function `layernorm_double_backward` for `native_layer_norm_backward`, preserves double backward support for LayerNorm in autodiff/ScriptModule
3. added python test to verify autodiff on layer_norm with various configuration of optional tensors; (verify the fix in https://github.com/pytorch/pytorch/issues/49430)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50467
Reviewed By: eellison
Differential Revision: D30232864
Pulled By: jansel
fbshipit-source-id: b9c33075386aff96afff7415df9f94388bfb474a
Co-authored-by: Ryan Spring <rspring@nvidia.com>
Co-authored-by: Jie <jiej@nvidia.com>
Summary:
Replace for loop with for `irange` loop. Also fix some unused variable warnings in range loop cases
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62928
Reviewed By: driazati
Differential Revision: D30171904
Pulled By: malfet
fbshipit-source-id: 1b437a0f7e3515f4a2e324f3450e93312f1933ae
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56058
User facing changes:
1. Adds a negative bit and corresponding new API (`is_neg()`,`resolve_neg()`)
2. `tensor.conj().imag` now returns a floating point tensor with neg bit set to 1 instead of a tensor with no notion of negative bit. Note that imag is still a view and all the view properties still hold for imag.
Non user facing changes:
1. Added a new Negative dispatch key and a backend fallback to handle it
2. Updated copy kernel to handle negative bit
3. Merged conjugate and negative bit fallback kernel
4. fixed https://github.com/pytorch/pytorch/issues/60478 (caused due to https://github.com/pytorch/pytorch/pull/54987)
Testing:
1. Added a new OpInfo based test `test_neg_view` (verifies that out-of-place and in-place operations work correctly for all operations when the input is a neg view tensor by checking the result against an actually negated tensor, verifies that autograd returns the same output for both neg view and actually negated tensors as well as it works fine when grad_out is a neg view).
2. Added a new test class containing `test_conj_view`, `test_neg_view`.
Test Plan: Imported from OSS
Reviewed By: soulitzer
Differential Revision: D29636403
fbshipit-source-id: 12214c9dc4806c51850f4a72a109db9527c0ca63
Summary:
This argument is only important for speed and memory usage. So it is ok to ignore it during the backward.
As discussed, we might want to change this to speed up backward in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60673
Reviewed By: soulitzer
Differential Revision: D29370125
Pulled By: albanD
fbshipit-source-id: ad50b3ea530aeb194f5a51845523b517a50f2c71
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59711
This is the exact same PR as before.
This was reverted before the PR below was faulty.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D28995762
Pulled By: albanD
fbshipit-source-id: 65940ad93bced9b5f97106709d603d1cd7260812
Summary:
Switches most of the simple for loops outside of `jit` directories to use `c10::irange`.
Generated with D28874212.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59481
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D28909681
fbshipit-source-id: ec9ab1bd602933238d9d0f73d4d8d027b75d9d85
Summary:
As per title. Resolves https://github.com/pytorch/pytorch/issues/56683.
`gradgradcheck` will fail once `target.requires_grad() == True` because of the limitations of the current double backward implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59447
Reviewed By: agolynski
Differential Revision: D28910140
Pulled By: albanD
fbshipit-source-id: 20934880eb4d22bec34446a6d1be0a38ef95edc7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54987
Based off of ezyang (https://github.com/pytorch/pytorch/pull/44799) and bdhirsh (https://github.com/pytorch/pytorch/pull/43702) 's prototype:
Here's a summary of the changes in this PR:
This PR adds a new dispatch key called Conjugate. This enables us to make conjugate operation a view and leverage the specialized library functions that fast path with the hermitian operation (conj + transpose).
1. Conjugate operation will now return a view with conj bit (1) for complex tensors and returns self for non-complex tensors as before. This also means `torch.view_as_real` will no longer be a view on conjugated complex tensors and is hence disabled. To fill the gap, we have added `torch.view_as_real_physical` which would return the real tensor agnostic of the conjugate bit on the input complex tensor. The information about conjugation on the old tensor can be obtained by calling `.is_conj()` on the new tensor.
2. NEW API:
a) `.conj()` -- now returning a view.
b) `.conj_physical()` -- does the physical conjugate operation. If the conj bit for input was set, you'd get `self.clone()`, else you'll get a new tensor with conjugated value in its memory.
c) `.conj_physical_()`, and `out=` variant
d) `.resolve_conj()` -- materializes the conjugation. returns self if the conj bit is unset, else returns a new tensor with conjugated values and conj bit set to 0.
e) `.resolve_conj_()` in-place version of (d)
f) `view_as_real_physical` -- as described in (1), it's functionally same as `view_as_real`, just that it doesn't error out on conjugated tensors.
g) `view_as_real` -- existing function, but now errors out on conjugated tensors.
3. Conjugate Fallback
a) Vast majority of PyTorch functions would currently use this fallback when they are called on a conjugated tensor.
b) This fallback is well equipped to handle the following cases:
- functional operation e.g., `torch.sin(input)`
- Mutable inputs and in-place operations e.g., `tensor.add_(2)`
- out-of-place operation e.g., `torch.sin(input, out=out)`
- Tensorlist input args
- NOTE: Meta tensors don't work with conjugate fallback.
4. Autograd
a) `resolve_conj()` is an identity function w.r.t. autograd
b) Everything else works as expected.
5. Testing:
a) All method_tests run with conjugate view tensors.
b) OpInfo tests that run with conjugate views
- test_variant_consistency_eager/jit
- gradcheck, gradgradcheck
- test_conj_views (that only run for `torch.cfloat` dtype)
NOTE: functions like `empty_like`, `zero_like`, `randn_like`, `clone` don't propagate the conjugate bit.
Follow up work:
1. conjugate view RFC
2. Add neg bit to re-enable view operation on conjugated tensors
3. Update linalg functions to call into specialized functions that fast path with the hermitian operation.
Test Plan: Imported from OSS
Reviewed By: VitalyFedyunin
Differential Revision: D28227315
Pulled By: anjali411
fbshipit-source-id: acab9402b9d6a970c6d512809b627a290c8def5f
Summary:
Resubmit of https://github.com/pytorch/pytorch/issues/59108, closes https://github.com/pytorch/pytorch/issues/24754, closes https://github.com/pytorch/pytorch/issues/24616
This reuses `linalg_vector_norm` to calculate the norms. I just add a new kernel that turns the norm into a normalization factor, then multiply the original tensor using a normal broadcasted `mul` operator. The result is less code, and better performance to boot.
#### Benchmarks (CPU):
| Shape | Dim | Before | After (1 thread) | After (8 threads) |
|:------------:|:---:|--------:|-----------------:|------------------:|
| (10, 10, 10) | 0 | 11.6 us | 4.2 us | 4.2 us |
| | 1 | 14.3 us | 5.2 us | 5.2 us |
| | 2 | 12.7 us | 4.6 us | 4.6 us |
| (50, 50, 50) | 0 | 330 us | 120 us | 24.4 us |
| | 1 | 350 us | 135 us | 28.2 us |
| | 2 | 417 us | 130 us | 24.4 us |
#### Benchmarks (CUDA)
| Shape | Dim | Before | After |
|:------------:|:---:|--------:|--------:|
| (10, 10, 10) | 0 | 12.5 us | 12.1 us |
| | 1 | 13.1 us | 12.2 us |
| | 2 | 13.1 us | 11.8 us |
| (50, 50, 50) | 0 | 33.7 us | 11.6 us |
| | 1 | 36.5 us | 15.8 us |
| | 2 | 41.1 us | 15 us |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59250
Reviewed By: mruberry
Differential Revision: D28820359
Pulled By: ngimel
fbshipit-source-id: 572486adabac8135d52a9b8700f9d145c2a4ed45
Summary:
This PR:
- Renames symeig_backward to eigh_backward
- Improves the stability and speed of the gradient computation by doing `V(A + B)Vh` instead of `VAVh + VBVh` when both the gradients of the eigenvectors and eigenvalues are defined.
- Updates the comments of the function to make them arguably clearer
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55049
Reviewed By: ngimel
Differential Revision: D28396823
Pulled By: mruberry
fbshipit-source-id: a144482bfb1054e281b58ae1fe3cf1015bab505d
Summary:
This one had a tricky usage of `torch.symeig` that had to be replaced. I tested the replacement locally though.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57732
Reviewed By: bdhirsh
Differential Revision: D28328189
Pulled By: mruberry
fbshipit-source-id: 7f000fcbf2b029beabc76e5a89ff158b47977474
Summary:
Backward methods for `torch.lu` and `torch.lu_solve` require the `torch.lu_unpack` method.
However, while `torch.lu` is a Python wrapper over a native function, so its gradient is implemented via `autograd.Function`,
`torch.lu_solve` is a native function, so it cannot access `torch.lu_unpack` as it is implemented in Python.
Hence this PR presents a native (ATen) `lu_unpack` version. It is also possible to update the gradients for `torch.lu` so that backward+JIT is supported (no JIT for `autograd.Function`) with this function.
~~The interface for this method is different from the original `torch.lu_unpack`, so it is decided to keep it hidden.~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46913
Reviewed By: albanD
Differential Revision: D28355725
Pulled By: mruberry
fbshipit-source-id: 281260f3b6e93c15b08b2ba66d5a221314b00e78
Summary:
This PR adds a note to the documentation that torch.svd is deprecated together with an upgrade guide on how to use `torch.linalg.svd` and `torch.linalg.svdvals` (Lezcano's instructions from https://github.com/pytorch/pytorch/issues/57549).
In addition, all usage of the old svd function is replaced with a new one from torch.linalg module, except for the `at::linalg_pinv` function, that fails the XLA CI build (https://github.com/pytorch/xla/issues/2755, see failure in draft PR https://github.com/pytorch/pytorch/pull/57772).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57981
Reviewed By: ngimel
Differential Revision: D28345558
Pulled By: mruberry
fbshipit-source-id: 02dd9ae6efe975026e80ca128e9b91dfc65d7213
Summary:
Backward methods for `torch.lu` and `torch.lu_solve` require the `torch.lu_unpack` method.
However, while `torch.lu` is a Python wrapper over a native function, so its gradient is implemented via `autograd.Function`,
`torch.lu_solve` is a native function, so it cannot access `torch.lu_unpack` as it is implemented in Python.
Hence this PR presents a native (ATen) `lu_unpack` version. It is also possible to update the gradients for `torch.lu` so that backward+JIT is supported (no JIT for `autograd.Function`) with this function.
~~The interface for this method is different from the original `torch.lu_unpack`, so it is decided to keep it hidden.~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46913
Reviewed By: astaff
Differential Revision: D28117714
Pulled By: mruberry
fbshipit-source-id: befd33db12ecc147afacac792418b6f4948fa4a4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50903
First part of #50010. Also fixes#51127.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27911345
Pulled By: mruberry
fbshipit-source-id: 7138fddc935802918ab9ff19f4bc1b9f4d745d41
Summary:
As per discussion here https://github.com/pytorch/pytorch/pull/57127#discussion_r624948215
Note that we cannot remove the optional type from the `dim` parameter because the default is to flatten the input tensor which cannot be easily captured by a value other than `None`
### BC Breaking Note
This PR changes the `ord` parameter of `torch.linalg.vector_norm` so that it no longer accepts `None` arguments. The default behavior of `2` is equivalent to the previous default of `None`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57662
Reviewed By: albanD, mruberry
Differential Revision: D28228870
Pulled By: heitorschueroff
fbshipit-source-id: 040fd8055bbe013f64d3c8409bbb4b2c87c99d13
Summary:
Problem arises for sinc'(x) where x != 0, but x ** 2 == 0, which happens for some very small floats.
I realized that my solution from https://github.com/pytorch/pytorch/issues/56763 was incomplete when I did a quick implementation using `torch.autograd.Function` and still got a `NaN` from my derivative.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56986
Reviewed By: gchanan
Differential Revision: D28093507
Pulled By: albanD
fbshipit-source-id: 2a30e1065b08c5c60de843a0778dedeb0fb295f4
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54085
Fixes https://github.com/pytorch/pytorch/issues/50121.
This fixes two similar issues pointed out with the dtype that `torch.pow` performs its computation. Thanks ngimel for spotting the issues originally (comments [here](https://github.com/pytorch/pytorch/pull/53669#discussion_r594624355) and [here](https://github.com/pytorch/pytorch/pull/53669#discussion_r594719704))!
Before:
```
>>> torch.pow(2, torch.tensor([17], dtype=torch.uint8), out=torch.tensor([0]))
tensor([0])
>>> torch.pow(2, torch.tensor(17, dtype=torch.uint8), out=torch.tensor(0))
tensor(131072)
>>> torch.pow(2, torch.tensor([17], dtype=torch.uint8, device='cuda'), out=torch.tensor([0], device='cuda'))
tensor([131072], device='cuda:0')
>>> torch.pow(2, torch.tensor(17, dtype=torch.uint8, device='cuda'), out=torch.tensor(0, device='cuda'))
tensor(131072, device='cuda:0')
```
After:
```
>>> torch.pow(2, torch.tensor([17], dtype=torch.uint8), out=torch.tensor([0]))
tensor([0])
>>> torch.pow(2, torch.tensor(17, dtype=torch.uint8), out=torch.tensor(0))
tensor(0)
>>> torch.pow(2, torch.tensor([17], dtype=torch.uint8, device='cuda'), out=torch.tensor([0], device='cuda'))
tensor([0], device='cuda:0')
>>> torch.pow(2, torch.tensor(17, dtype=torch.uint8, device='cuda'), out=torch.tensor(0, device='cuda'))
tensor(0, device='cuda:0')
```
In all four cases above, `tensor(0, ...)` is the correct value because the computed "common dtype" among the inputs is expected to be `uint8`. Computing `2 ** 7` in uint8 will then overflow to zero. Finally, we cast the computed output to the output tensor's dtype, which is `int32`.
There were two separate issues fixed in this PR: one for cpu and one for cuda:
* For CPU, The `pow(Scalar, Tensor)` overload wasn't calling `set_wrapped_number(true)` after wrapping the scalar in a Tensor, which caused the "promoted" scalar to incorrectly participate in type promotion (see the documented behavior [here](aa8714dfed/c10/core/TensorImpl.h (L590)))
* For CUDA, the cuda kernels defined in `PowKernel.cu` were using the output's dtype to run the computation, instead of the common dtype.
As an aside: The CPU and CUDA kernels actually both use `iter.dtype()` instead of `iter.common_dtype()` to run the computation, which I fixed. The reason that only manifested here for CUDA is because TensorIterator has cpu-specific logic to create temporary outputs with the intermediate dtype (shown [here](aa8714dfed/aten/src/ATen/TensorIterator.cpp (L349))). I'm not sure what the end state is there- I can imagine that being something we're more okay doing for cpu than for cuda, but it also leads to hard-to-track-down inconsistencies between the two like in this case.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27096330
Pulled By: bdhirsh
fbshipit-source-id: a7e2909243851625cb3056d1e7abb2383bfe95f2
Summary:
Converts loops of the form:
```
for(int64_t VAR=0;VAR<LIMIT;VAR++)
```
to the form
```
for(const auto VAR : c10::irange(LIMIT))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55148
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D27447811
fbshipit-source-id: 6311a094ec4a81a0b57383aaee0ba1b1dc2445c4
Summary:
Fixes https://github.com/pytorch/pytorch/issues/51652.
In particular:
- the main implementation is in `torch.linalg.det` now. `torch.det` is just a deprecated alias to it
- add a new `OpInfo` for `torch.linalg.det`
- remove the old-style tests for `torch.det` (this is similar to what we did for `torch.linalg.slogdet`, see https://github.com/pytorch/pytorch/issues/49194)
- added a `out=` argument to `torch.linalg.det`, but **not** to `torch.det`.
It is worth noting that I had to skip few tests:
- `TestGradientsCuda::test_fn_gradgrad_linalg_det_cuda_float64`. This is not a regression: the functionality is broken also on master, but the test is not executed properly due to https://github.com/pytorch/pytorch/issues/53361.
And the following tests which fails only on ROCm:
- `test_variant_consistency_jit_cuda_{float64,float32}`
- `test_fn_grad_cuda_float64`
I think that the ROCm tests fail because the current linalg.det backward is unstable if the matrix has repeated singular values, see https://github.com/pytorch/pytorch/issues/53364 .
(At the moment of writing some CI jobs are still running but I believe the build will be green, since the only difference wrt the last push is the skip of the ROCm tests)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53119
Reviewed By: H-Huang
Differential Revision: D27441999
Pulled By: mruberry
fbshipit-source-id: 5eab14c4f0a165e0cf9ec626c3f4bb23359f2a9e
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53511
torch.det does depend on torch.prod, which in turn depends on several other functions, and they also depend on torch.prod, so there is a circular relationship, hence this PR will enable complex backward support for several functions at once.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48125
Reviewed By: pbelevich
Differential Revision: D27188589
Pulled By: anjali411
fbshipit-source-id: bbb80f8ecb83a0c3bea2b917627d3cd3b84eb09a
Summary:
This PR adds autograd support for `torch.orgqr`.
Since `torch.orgqr` is one of few functions that expose LAPACK's naming and all other linear algebra routines were renamed a long time ago, I also added a new function with a new name and `torch.orgqr` now is an alias for it.
The new proposed name is `householder_product`. For a matrix `input` and a vector `tau` LAPACK's orgqr operation takes columns of `input` (called Householder vectors or elementary reflectors) scalars of `tau` that together represent Householder matrices and then the product of these matrices is computed. See https://www.netlib.org/lapack/lug/node128.html.
Other linear algebra libraries that I'm aware of do not expose this LAPACK function, so there is some freedom in naming it. It is usually used internally only for QR decomposition, but can be useful for deep learning tasks now when it supports differentiation.
Resolves https://github.com/pytorch/pytorch/issues/50104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52637
Reviewed By: agolynski
Differential Revision: D27114246
Pulled By: mruberry
fbshipit-source-id: 9ab51efe52aec7c137aa018c7bd486297e4111ce
Summary:
Provides a faster formula for `cumprod` in the case when the input has zeros. This formula is non-differentiable, so we leave the previous formula for the cases when `at::GradMode::is_enabled()`.
This new formula gives up to x10 and x30 speed-ups in CPU and GPU (see the benchmarks below).
The `cumsum` backward formula was rewritten so that no copies are necessary. We also removed a double negation in its formula. This gives a significant speed-up in CPU, while being almost as efficient as the formula with copies in GPU. We can see this speed-up when comparing the "No zeros" part of the benchmark.
Benchmarks:
nb. It is worth noting that the script tests the forward and the backward for `cumprod`, so the speed-ups should be even larger than those announced here.
<details>
<summary>Script</summary>
```python
from IPython import get_ipython
import torch
from itertools import product
torch.manual_seed(13)
torch.set_num_threads(1)
ipython = get_ipython()
cpu = torch.device('cpu')
cuda = torch.device('cuda')
def run_test(ndims, size, size_prod, zeros, device):
print(f"ndims: {ndims}, tensor_size: {size}, size_prod: {size_prod}, zeros: {zeros}, device: {device}")
for dim in range(ndims):
sizes = ndims * [size]
sizes[dim] = size_prod
tensor = torch.rand(*sizes, device=device)
with torch.no_grad():
if zeros:
# Set 0.1 of them to zero
p_drop = 0.1
mask = torch.full_like(tensor, 1.0 - p_drop)
tensor = tensor * torch.bernoulli(mask)
else:
tensor = tensor + 1e-3
tensor.requires_grad_()
grad = torch.ones_like(tensor)
# We test both forward + backward, meaning that the speed-up is actually greater than reported
# That being said, this is more realistic than doing `retain_graph=True`
command = "torch.autograd.grad([tensor.cumprod(dim)], [tensor], grad_outputs=[grad])"
if device == cuda:
command += "; torch.cuda.synchronize()"
ipython.magic(f"timeit {command}")
print()
for device, zeros in product([cuda, cpu], [True, False]):
run_test(3, 300, 10, zeros, device)
run_test(3, 300, 100, zeros, device)
if device == cuda:
run_test(3, 300, 300, zeros, device)
```
</details>
<details>
<summary>CPU This PR (Some regression small tensors, x4 speed-up large tensors)</summary>
```
Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: True, device: cpu
28.2 ms ± 12.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
29.8 ms ± 78.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
24.5 ms ± 29.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: True, device: cpu
414 ms ± 3.63 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
428 ms ± 4.12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
382 ms ± 3.18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
No Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: False, device: cpu
3.11 ms ± 9.72 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.83 ms ± 3.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.08 ms ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: False, device: cpu
92.2 ms ± 113 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
101 ms ± 101 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
87 ms ± 170 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
```
</details>
<details>
<summary>CUDA This PR (7-30x speed-up)</summary>
```
Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: True, device: cuda
1.46 ms ± 2.07 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.48 ms ± 3.51 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.93 ms ± 8.07 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: True, device: cuda
10.5 ms ± 914 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
10.6 ms ± 509 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
11.7 ms ± 864 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 300, zeros: True, device: cuda
30.3 ms ± 5.16 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
30.6 ms ± 6.44 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
32.2 ms ± 2.34 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
No Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: False, device: cuda
248 µs ± 335 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
252 µs ± 186 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
438 µs ± 254 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: False, device: cuda
2.1 ms ± 193 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.16 ms ± 380 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.59 ms ± 398 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 300, zeros: False, device: cuda
6.3 ms ± 857 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
6.39 ms ± 288 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.15 ms ± 233 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
</details>
<details>
<summary>CPU master</summary>
```
Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: True, device: cpu
8.27 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
10.8 ms ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
28.2 ms ± 74.4 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: True, device: cpu
1.53 s ± 116 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.95 s ± 4.38 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.86 s ± 3.58 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
No Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: False, device: cpu
3.42 ms ± 20 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.25 ms ± 3.65 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.34 ms ± 3.04 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: False, device: cpu
104 ms ± 148 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
117 ms ± 99.5 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
94.8 ms ± 125 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
```
</details>
<details>
<summary>CUDA master</summary>
```
Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: True, device: cuda
912 µs ± 431 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.05 ms ± 2.46 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.74 ms ± 381 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: True, device: cuda
71.3 ms ± 7.91 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
85.4 ms ± 9.82 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
119 ms ± 6.21 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
ndims: 3, tensor_size: 300, size_prod: 300, zeros: True, device: cuda
646 ms ± 103 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
776 ms ± 81.7 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
917 ms ± 160 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
No Zeros:
ndims: 3, tensor_size: 300, size_prod: 10, zeros: False, device: cuda
301 µs ± 893 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
308 µs ± 236 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
592 µs ± 140 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
ndims: 3, tensor_size: 300, size_prod: 100, zeros: False, device: cuda
2.61 ms ± 375 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.68 ms ± 524 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.38 ms ± 736 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
ndims: 3, tensor_size: 300, size_prod: 300, zeros: False, device: cuda
7.89 ms ± 848 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
8.03 ms ± 517 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.24 ms ± 405 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
</details>
cc nikitaved
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53711
Reviewed By: jbschlosser
Differential Revision: D27059662
Pulled By: anjali411
fbshipit-source-id: be610d5590c0199b4412dff66fac47666faaff9d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53583
`Scalar` takes 32 bytes due to `c10::complex<double>`
requires aligning to 16 bytes. Passing Scalar by reference
shows about 1% improvements on instruction count.
All the changes in this commit are codemoded except for
the following 4 files (which code-gen signatures):
```
tools/codegen/api/cpp.py
tools/codegen/api/native.py
tools/codegen/api/structured.py
caffe2/contrib/aten/gen_op.py
```
# Codemode
## Main Step
For the codemod part, here is the main command used:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)optional<Scalar> (\w+)' '${1}const optional<Scalar>& ${2}'
```
As you can tell, it codemods both `Scalar` and `optional<Scalar>`. Apply these commands iteratively until reaching a fix-point (since one method signature might contain multiple `Scalar` parameter).
In retrospect, excluding `thrid_party` and `torch/csrc/jit` would be a good idea. (I revert it manually later, see https://github.com/pytorch/pytorch/pull/53479 as an reference).
## Pre-Step
Prior to applying the main command, as some `Scalar` are presented as `at::Scalar` or `c10::Scalar`, so I codemod some of them in advance. Here is an incomplete list:
```
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)at::Scalar (\w+)' '${1}const at::Scalar& ${2}'
fastmod --extensions h '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
fastmod --extensions cpp '([a-zA-Z_+]\([^)]*,?\s*)c10::optional<Scalar> (\w+)' '${1}const c10::optional<Scalar>& ${2}'
```
## Fixup
There are a couple of post codemod fixup. For example, `const Scalar` will be codemoded into `const const Scalar&`. `at:Scalar` will be codemoded into `at::const Scalar&` (if `Pre-step` is not done comprehensively). Here is an incomplete list:
```
fastmod --extensions cpp 'const const Scalar' 'const Scalar'
fastmod --extensions h 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod --extensions cpp 'const const c10::optional<Scalar>' 'const c10::optional<Scalar>'
fastmod 'at::const Scalar&' 'const at::Scalar&'
```
## Supplementary
`cu` and `mm` files also need to be codemoded, for example:
```
fastmod --extensions cu 'at::const Scalar&' 'const at::Scalar&'
fastmod --extensions mm '([a-zA-Z_+]\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
```
Function pointers are not codemoded. Here is an incomplete list:
```
# Cover case: using index_fill_fn = void(*)(TensorIterator & iter, int64_t dim, int64_t self_dim_size, int64_t self_dim_stride, Scalar source);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar (\w+)' '${1}const Scalar& ${2}'
# Cover case: using softplus_fn = void (*)(TensorIterator&, Scalar, Scalar);
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions cpp '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)Scalar([, \)])' '${1}const Scalar&${2}'
fastmod --extensions h '(void\s*\(\s*\*\s*\)\([^)]*,?\s*)optional<Scalar>([, \)])' '${1}const optional<Scalar>&${2}'
```
Some corner cases needs to be manually fixed.
ghstack-source-id: 123970306
Test Plan: Imported from OSS
Reviewed By: smessmer
Differential Revision: D26904445
fbshipit-source-id: 8d8a002af4b5125f153a32f03c6956be7ae5671d
Summary:
As per title. Compared to the previous version, it is lighter on the usage of `at::solve` and `at::matmul` methods.
Fixes https://github.com/pytorch/pytorch/issues/51621
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52875
Reviewed By: mrshenli
Differential Revision: D26768653
Pulled By: anjali411
fbshipit-source-id: aab141968d02587440128003203fed4b94c4c655
Summary:
Fixes https://github.com/pytorch/pytorch/issues/49683
This PR solves Backward through sparse_coo_tensor bug by implementing a `sparse_mask_helper` function for n-dimensional sparse tensor for CPU and CUDA which is used to reimplement `sparse_constructor_values_backward` function.
This `sparse_mask` function was implemented before for backward sparse-sparse matmul. However, the algorithm is little different because in this case it should be applyable not only for matrices but for n-dimensional tensors. Thankfully it was not quite hard to extend and now both share the same code base.
Note that no new tests are required because now the backward for sparse-sparse matmul now uses the new `sparse_mask_helper`.
ngimel, mruberry - kindly review this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50361
Reviewed By: zhangguanheng66
Differential Revision: D26270483
Pulled By: ngimel
fbshipit-source-id: ee4bda49ff86e769342674b64d3c4bc34eae38ef
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51706
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50280
As mentioned in gh-43874, this adds a `rounding_mode={'true', 'trunc', 'floor'}`
argument so `torch.div` can be used as a replacement for `floor_divide` during
the transitional period.
I've included dedicated kernels for truncated and floor division which
aren't strictly necessary for float, but do perform significantly better (~2x) than
doing true division followed by a separate rounding kernel.
Note: I introduce new overloads for `aten::div` instead of just adding a default
`rounding_mode` because various JIT passes rely on the exact operator schema.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D26123271
Pulled By: mruberry
fbshipit-source-id: 51a83717602114597ec9c4d946e35a392eb01d46