Commit Graph

36 Commits

Author SHA1 Message Date
soulitzer
a060f3d272 Rewrite autograd producer consumer stream sync logic (#151079)
Also see previous work https://github.com/pytorch/pytorch/pull/142097

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151079
Approved by: https://github.com/albanD
2025-05-16 15:42:22 +00:00
PyTorch MergeBot
2c1912452d Revert "Rewrite autograd producer consumer stream sync logic (#151079)"
This reverts commit f78e4529a9.

Reverted https://github.com/pytorch/pytorch/pull/151079 on behalf of https://github.com/jeanschmidt due to Seems to have introduced regressions in internal signals, see [D74648937](https://www.internalfb.com/diff/D74648937) ([comment](https://github.com/pytorch/pytorch/pull/151079#issuecomment-2880176879))
2025-05-14 13:07:12 +00:00
soulitzer
f78e4529a9 Rewrite autograd producer consumer stream sync logic (#151079)
Also see previous work https://github.com/pytorch/pytorch/pull/142097

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151079
Approved by: https://github.com/albanD
2025-05-12 21:07:16 +00:00
cyy
f4f0f2995d Fix Wextra-semi warnings (#139000)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139000
Approved by: https://github.com/ezyang
2024-10-28 21:48:51 +00:00
soulitzer
d6f340f66c Determine autograd engine ready queue based on InputMetadata instead of InputBuffer (#135633)
Thanks @awgu for raising this issue and the small repro

From offline discussion with @albanD, in the case where a forward returns multiple outputs with different devices, we'd want to select the ready queue based on the device of the first one. Even though this is somewhat arbitrary, we prefer this over deciding which ready queue to push based on whichever input buffer's we happen to compute last, which can vary depending on more factors and thus be harder to reason about. This is in theory bc-breaking, but it seems unlikely that someone would depend on this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135633
Approved by: https://github.com/albanD
2024-10-04 23:59:46 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
cyy
39df084001 [Clang-tidy header][16/N] Enable clang-tidy on headers in torch/csrc/autograd (#117821)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117821
Approved by: https://github.com/Skylion007
2024-01-22 00:52:56 +00:00
cyy
20f769544c [12/N] Apply clang-tidy and fix warnings in headers of torch/csrc (#116486)
This PR follows #116751.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116486
Approved by: https://github.com/albanD
2024-01-10 08:48:14 +00:00
PyTorch MergeBot
0aa50909f3 Revert "[12/N] Apply clang-tidy and fix warnings in headers of torch/csrc (#116486)"
This reverts commit 5aa258eb09.

Reverted https://github.com/pytorch/pytorch/pull/116486 on behalf of https://github.com/izaitsevfb due to Reverting, as it depends on https://github.com/pytorch/pytorch/pull/116353, which has to be reverted ([comment](https://github.com/pytorch/pytorch/pull/116486#issuecomment-1876042948))
2024-01-03 22:18:54 +00:00
cyy
5aa258eb09 [12/N] Apply clang-tidy and fix warnings in headers of torch/csrc (#116486)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116486
Approved by: https://github.com/albanD
2023-12-30 18:38:53 +00:00
Jason Ansel
e9fd815226 Misc visibility changes for compiled autograd (#105298)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105298
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-07-18 01:10:04 +00:00
cyy
85851b1e8f remove useless clang-tidy suppression (#92287)
remove NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
remove NOLINTNEXTLINE(performance-move-const-arg)
remove NOLINTNEXTLINE(performance-no-automatic-move)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92287
Approved by: https://github.com/albanD
2023-01-21 02:33:24 +00:00
soulitzer
1bc60c6b31 [reland] Improve hooks ordering behavior (#92559)
This reverts commit e525f433e1.

Original PR:  #85849
Fixes #ISSUE_NUMBER

In addition to reverting the revert, this PR:
- defines the virtual destructor of FunctionPreHook in the header. Why? Presumably the internal build imports the header from somewhere, but does not have function_hooks.cpp (where the virtual destructor was previously defined) in the same compilation unit.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92559
Approved by: https://github.com/albanD
2023-01-19 08:17:32 +00:00
PyTorch MergeBot
e525f433e1 Revert "Improve hooks ordering behavior (#85849)"
This reverts commit 049838f249.

Reverted https://github.com/pytorch/pytorch/pull/85849 on behalf of https://github.com/albanD due to fails internal build
2023-01-18 15:27:22 +00:00
soulitzer
049838f249 Improve hooks ordering behavior (#85849)
Addresses: https://github.com/pytorch/pytorch/issues/35802

Design doc: https://docs.google.com/document/d/19xSib7FFknRQ5f3ptGFUmiOt3BrgXSUlTQH2xMcZJYg/edit#

### Changes in this PR

#### Implementation
- We have now have 3 fields: pre_hooks, retains_grad_hooks, and tensor_pre_hooks so that we can more precisely define their ordering and when they are executed.
- Since retains grad uses an entirely new field, we cannot reuse the old retains grad, logic. We refactor retains grad to call directly into the variable.cpp logic. Other logic in variable.cpp that handle cpp hooks must also be updated.

#### Hooks ordering and execution:
- Defines pre-hooks registered on tensor to run before pre-hooks registered on grad_fn
- Updates pre-hooks registered on tensor to always run, even if they are the inputs= to .grad()
- Post hooks (and pre hooks) can now observe the modifications to gradient by the tensor pre hook

#### Retains grad hooks
- retains grad hooks always execute last, even if there are other tensor pre-hooks registered

#### Unchanged:
- pre_hooks registered to grad_fn aren't expected to execute if they are the inputs= to .grad()

Follow ups:
- simplify retains_grad field to not be a vector, since it always holds a single hook
- potentially merge capture hooks with tensor pre hooks, this would involve some additional refactoring since
- python hooks registered to tensor behavior on in-place is still wrong

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85849
Approved by: https://github.com/albanD
2023-01-17 16:23:21 +00:00
richard
382ef1fda7 Autograd graphtask trim unnecessary edges (#82544)
### Introduction
<!-- What did you change and why was it needed? -->

Removing unnecessary weight gradient calculation is very important for applications that need high-order derivatives during training. However, this is not supported by the current Autograd engine.

For more detail: The backward function of a `matmul` operator (e.g., `linear` `addmm` `mm`), has two matmuls, one for `input gradient` and another for `weight gradient`. For a typical neural network (nn) with a few linear layers and activation functions, if the user calls `torch.autograd.grad()` to calculate the derivative of the nn output `y` w.r.t the nn input `x`,  only the `input gradient` of the `matmul` operator is needed, and the `weight gradient` is discarded. However, the current PyTorch autograd engine will always calculate the `weight gradient` if `weight` requires gradient (the calculation of the high-order derivative is performed during training).

The figure attached shows the autograd graph of the following code snippet:
```py
y = torch.nn.functional.linear(x, weight, bias)
y = y.pow(2)
# first order derivative
y__x, = torch.autograd.grad(y, x, grad_outputs=grad_outputs, create_graph=True)
# first order derivative
y__x__x, = torch.autograd.grad(y__x, x, grad_outputs=grad_outputs, create_graph=True)
```
The path with  is not needed when calculating derivatives.

<img width="50%" alt="image" src="https://user-images.githubusercontent.com/9999318/182018117-719c5a23-bcc6-4a63-8e8d-1bca3ebda2e3.png">

### Issue
<!-- Link to Issue ticket or RFP -->
Related issue: https://github.com/pytorch/pytorch/issues/56500

### Method
When calling `torch.autograd.grad`, `exec_info_` is created for each GraphTask, which allows filtering paths on the graph that are not needed. However, when the GraphTask calls into the node, the node still does not know whether the edges are needed or not. In the case of matmul, `weight.requires_grad is True` so the weight gradient is always calculated.

Following https://github.com/pytorch/pytorch/issues/56500#issuecomment-825694656, this PR passes the graph task's thread_local `exec_info_` into the node, so it could trim unnecessary edges during `torch.autograd.grad` calls.

### Benchmark
Benchmark script: https://gist.github.com/yueyericardo/24158433a2021c51eeef9c3e2722df99

Benchmark result:
6 hidden layers, batch size 10000, on A100

FP32 result
| hessian benchmark             | FP32 (before) | FP32 (After)      | FP32 (Functorch v0.1.1) |
| ----------------------------- | ------------- | ----------------- | ----------------------- |
| Linear + ReLU (no backward)   | 55.658 ms     | 29.392 ms (1.90X) | 29.547 ms (1.90X)       |
| Linear + ReLU (with backward) | 81.173 ms     | 54.917 ms (1.47X) | 68.988 ms (1.18X)       |

TF32 result
| hessian benchmark             | TF32 (before) | TF32 (after)      | TF32 (Functorch v0.1.1) |
| ----------------------------- | ------------- | ----------------- | ----------------------- |
| Linear + ReLU (no backward)   | 19.801 ms     | 11.259 ms (1.76X) | 10.754 ms (1.84X)       |
| Linear + ReLU (with backward) | 29.167 ms     | 20.466 ms (1.42X) | 22.784 ms (1.28X)       |

For FP32 result, we could get 1.9X speed up for hessian calculation, and 1.47X speed up during training, which is even faster than functorch `vmap(jacfwd(jacrev` implementation. (functorch has performance regression on v0.2.0, https://github.com/pytorch/functorch/issues/989, so we are using v0.1.1 for benchmark)

@zou3519 does functorch also includes similar optimizations during hessian calculation? If not, what do we need to do so the functorch could also benefit from this PR?

### Testing
<!-- How did you test your change? -->

- [x] we need to figure out a way for unittest

### Thanks
Thanks for the great blog: [How Computational Graphs are Executed in PyTorch | PyTorch](https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/)

cc @zasdfgbnm @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82544
Approved by: https://github.com/soulitzer
2022-08-11 18:50:09 +00:00
Michael Suo
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
Mike Guo
6ecc1a4c4f Make pytorch clang-tidy clean (#60649)
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.

I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop

# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
  -j \
  -s \
  -k \
  -v \
  --paths torch/csrc/ \
  -g"-torch/csrc/jit/passes/onnx/helper.cpp" \
  -g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
  -g"-torch/csrc/jit/serialization/onnx.cpp" \
  -g"-torch/csrc/jit/serialization/export.cpp" \
  -g"-torch/csrc/jit/serialization/import.cpp" \
  -g"-torch/csrc/jit/serialization/import_legacy.cpp" \
  -g"-torch/csrc/onnx/init.cpp" \
  -g"-torch/csrc/cuda/nccl.*" \
  -g"-torch/csrc/cuda/python_nccl.cpp" \
  -g"-torch/csrc/autograd/FunctionsManual.cpp" \
  -g"-torch/csrc/generic/*.cpp" \
  -g"-torch/csrc/jit/codegen/cuda/runtime/*" \
  -g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
  -g"-torch/csrc/deploy/interpreter/interpreter.h" \
  -g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
  -g"-torch/csrc/deploy/interpreter/test_main.cpp"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649

Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.

Reviewed By: walterddr, janeyx99

Differential Revision: D29504258

Pulled By: 1ntEgr8

fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
2021-07-01 12:21:07 -07:00
Jeffrey Wan
d20483a999 Skip dummy node creation for autograd engine when there is a single input and place on correct queue (#47592)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/42890
 - Removes dummy node
 - Places graph root on the correct queue based on input buffer's device instead of cpu queue by default

cpu - no significant change in speed (too noisy to measure), but we see up to 7% reduction in small graphs
cuda - small reduction in speed (still very noisy) and up to ~20% reduction in instruction count for small graphs

**CPU**
Code:
```
import torch
from torch.utils.benchmark import Timer

setup="""
a = torch.rand((2, 2), requires_grad=True)
b = torch.rand((2, 2), requires_grad=True)
gradient = torch.ones(2, 2)
"""

stmt="""
torch.autograd.grad(a*b, [a, b], gradient)
"""

timer = Timer(stmt, setup)

print(timer.timeit(10000))
print(timer.collect_callgrind(100))
```

Before (when dummy node is not skipped):
```
torch.autograd.grad(a*b, [a, b], gradient)
setup:
  a = torch.rand((2, 2), requires_grad=True)
  b = torch.rand((2, 2), requires_grad=True)
  gradient = torch.ones(2, 2)

  26.62 us
  1 measurement, 10000 runs , 1 thread
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7efee44ad8e0>
torch.autograd.grad(a*b, [a, b], gradient)
setup:
  a = torch.rand((2, 2), requires_grad=True)
  b = torch.rand((2, 2), requires_grad=True)
  gradient = torch.ones(2, 2)

                           All          Noisy symbols removed
    Instructions:      9755488                    9659378
    Baseline:             4300                       3784
100 runs per measurement, 1 thread
```

After
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f56961a7730>
torch.autograd.grad(a*b, [a, b], gradient)
setup:
  a = torch.rand((2, 2), requires_grad=True)
  b = torch.rand((2, 2), requires_grad=True)
  gradient = torch.ones(2, 2)

  26.78 us
  1 measurement, 10000 runs , 1 thread
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7f56961a78e0>
torch.autograd.grad(a*b, [a, b], gradient)
setup:
  a = torch.rand((2, 2), requires_grad=True)
  b = torch.rand((2, 2), requires_grad=True)
  gradient = torch.ones(2, 2)

                           All          Noisy symbols removed
    Instructions:      9045508                    8939872
    Baseline:             4280                       3784
100 runs per measurement, 1 thread
```
**Cuda**

Before
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f84cbaa1ee0>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

  70.49 us
  1 measurement, 10000 runs , 1 thread
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7f84cbaa1e50>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

                           All          Noisy symbols removed
    Instructions:      5054581                    4951911
    Baseline:             4105                       3735
100 runs per measurement, 1 thread
```

Remove dummy node only
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7fbf29c67eb0>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

  55.65 us
  1 measurement, 10000 runs , 1 thread
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fbf29c67e20>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

                           All          Noisy symbols removed
    Instructions:      5002105                    4900841
    Baseline:             4177                       3731
100 runs per measurement, 1 thread
```

Remove dummy node and put in correct queue
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7fb64438ce80>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

  27.56 us
  1 measurement, 10000 runs , 1 thread
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fb64438cdf0>
torch.autograd.grad(out, [x, y], gradient)
setup:
  x = torch.rand((2,2), requires_grad=True, device="cuda")
  y = torch.rand((2,2), requires_grad=True, device="cuda")
  out = x + y
  gradient = torch.ones(2, 2).cuda()

                           All          Noisy symbols removed
    Instructions:      4104433                    4007555
    Baseline:             4159                       3735
100 runs per measurement, 1 thread
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47592

Reviewed By: ailzhang

Differential Revision: D24890761

Pulled By: soulitzer

fbshipit-source-id: f457376e4a882f8a59476e8c1e708391b1a031a2
2020-11-16 11:33:35 -08:00
Mike Ruberry
87a2c92615 Updates autograd engine to respect streams set in forward (#8354)
Summary:
This PR addresses issue https://github.com/pytorch/pytorch/issues/7601.

Currently models that use streams explicitly in forward have to do a lot of extra work to make backwards respect those streams. This PR extends the (recently added) input tracing (see TypeAndShape) to record the devices and streams of inputs. The autograd engine then uses this metadata to enact the expected stream parallelism without extra work from the user.

For example, a model with forward declared like (original example courtesy of ngimel):

```
def forward(self,x):
        x0 = x.clone()
        torch._C._cuda_setStream(self.stream1._cdata)
        y0 = self.fc1(x0)
        self.event1.record(stream = torch.cuda.current_stream())

        torch._C._cuda_setStream(self.stream2._cdata)
        y1 = self.fc2(x)
        self.event2.record(stream = torch.cuda.current_stream())
        self.stream2.wait_event(self.event1)
        return y0 + y1
```

currently will backward on a single stream. With this change the kernels will go on the streams they are assigned in forward and both forward and backward will (for appropriate sizes) run the fc1 and fc2 kernels simultaneously.

The crux of this change is, as mentioned, an expansion of the TypeAndShape tracing and a relatively simple change to the autograd engine to use cuda events for stream synchronization. To make this efficient I also added a new AutoGPUAndStream class, exposed getting and setting streams on devices, and removed InputBuffer's AutoGPU (it's now redundant). While making these modifications I also fixed AutoGPU to check before setting the GPU when it's destroyed and to use THCudaCheck instead of its custom error handler. These changes mean that an often excessive cudaSetDevice() is not being called when inputs are added to a buffer.

In addition to allowing users to easily set and use streams that are respected in both forward and backward, this change may encourage modules to do the same and the expanded tracing might allow further optimizations in the autograd engine. (apaszke, for example, now after initial enumeration we know the number of devices that will be used by a graph task, which might help provide a sense of the "level of parallelism" we should expect.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8354

Test Plan: Two tests were added specifically for this behavior.

Differential Revision: D17275980

Pulled By: mruberry

fbshipit-source-id: 92bd50ac782ffa973b159fcbbadb7a083802e45d
2019-09-10 23:46:51 -07:00
Davide Libenzi
272a48f6fe Enable autograd to recognize the XLA backend as one providing multiple devices (#17847)
Summary:
…e devices, while not being CUDA/HIP.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17847

Differential Revision: D14545634

Pulled By: ezyang

fbshipit-source-id: 417181bf2ff4f8978544afe2fb6b042e787854ed
2019-03-20 13:58:36 -07:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Peter Goldsborough
04939a4745 Match parameter names and = default (#9737)
Summary:
More clang tidy cleanups in `torch/csrc`. This time:

1. `hicpp-use-equals-default` recommends `= default` instead of `{}` for constructors/destructors. This is better practice because it expresses the intent better (https://stackoverflow.com/questions/6502828/what-does-default-mean-after-a-class-function-declaration)
2. `readability-inconsistent-declaration-parameter-name` enforces that parameter names in the declaration match parameter names in the definition. This is just generally useful and can prevent confusion and bugs.

Also updated my script a little bit.

apaszke ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9737

Differential Revision: D9069069

Pulled By: goldsborough

fbshipit-source-id: f7b3f3a4eb4c9fadc30425a153566d3b613a41ae
2018-07-30 14:10:00 -07:00
Peter Goldsborough
04a3616de0 Replace std::size_t with size_t (#8093) 2018-06-04 11:10:44 -04:00
Priya Goyal
e3196e0ea8
[Re-checkpointing] Autograd container for trading compute for memory (#6467)
* Autograd container for trading compute for memory

* add a unit test for checkpoint

* address comments

* address review comments

* adding some docs for the checkpoint api

* more comments

* more comments

* repro bug

* Fix a subtle bug/apply some review comments

* Update checkpoint.py

* Run everything in grad mode

* fix flake and chunk=1

* use imperative backward as per discussion

* remove Variable and also add models and test for models

* Add a simple thread local variable to check for autograd grad mode

* remove models and models test after debugging

* address review comments

* address more comments

* address more comments
2018-04-10 15:26:24 -04:00
Luca Antiga
396637cdd6 Python-free build of autograd + jit (#5356)
This PR adds the possibility to build the C++ parts of autograd and jit, with no dependency on Python.
The goal is to allow taking a PyTorch IR representation (a tree s-expr) and running it with provided inputs.

Prerequisite: build PyTorch so that codegen runs once.
Instructions:

cd tools/cpp_build
bash build_all.sh
This will build libtorchjit and torchjit_test in tools/cpp_build/build/torchjit-build. The latter basically runs the code in test_jit.cpp for now.

While writing the PR, it turned out that a few of Python.h includes were redundant. They were removed here (PyTorch tests still pass on my machine, we'll see CI).

* Introduce Python-free builds of autograd and jit

* Remove NO_PYTHON ifdef in functions/special
2018-03-08 15:13:10 -05:00
Tongzhou Wang
a14abc741e Heuristic-based autograd execution order (#4746)
* heap autograd order

* --accept JIT test
2018-01-23 23:45:33 -05:00
Adam Paszke
79d15c52cb
Improve the engine support for functional graph execution (#4690)
Previously the side-effect free grad calculation was performed
using callbacks that could also override the decision to run a
function. However this had a few problems e.g. it forced us to iterate
over pretty much all functions in the graph and drop their buffers.

This patch improves the mechanism, by adding explicit support for this
kind of evaluation in execute(). It's safer, and the algorithm used to
decide which nodes have to be evaluated was replaced with a faster one.
2018-01-18 11:20:30 +01:00
Adam Paszke
16b7f3a35d Clean up InputBuffer 2017-12-14 15:14:35 +01:00
Sam Gross
1290e586fb Use at::Tensor based autograd Variable (#2676)
Variable is now a subclass of at::Tensor backed by a VariableImpl* pImpl. The implementation of the ATen functions is defined in the auto-generated VariableType.h/cpp file.

Currently, only functions which fall through to the base type, such as sizes() and isCuda() are implemented. Differentiable ops like add() and mul() will be added in a subsequent PR.
2017-09-12 11:36:01 -04:00
Zachary DeVito
43c944acbd Remove dead THPP code that has been replaced with ATen objects. (#2235)
THPP usage is now isolated in THD.
2017-07-29 08:07:41 +05:30
Edward Z. Yang
3ada9da808 Make csrc -Werror clean. (#1795)
Primary things I had to fix:

- Suppress _XOPEN_SOURCE warnings by ensuring that Python.h is included
  first, because it always unconditionally defines this macro.

- Turn off strict aliasing, because Python 2 doesn't work with strict
  aliasing.

- Workaround setuptools bug, where it's incorrectly passing
  -Wstrict-prototypes to C++ compilers (where this doesn't make
  any sense)

To compile csrc with -Werror, run `CFLAGS="-Werror" python setup.py build_ext`

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-06-13 20:18:09 -04:00
Adam Paszke
2ca787fcf4 Refactor attribute names in autograd 2017-05-01 16:44:56 -04:00