Commit Graph

49745 Commits

Author SHA1 Message Date
Xuehai Pan
4dce5b71a0 [build] modernize build-frontend: python setup.py develop/install -> [uv ]pip install --no-build-isolation [-e ]. (#156027)
Modernize the development installation:

```bash
# python setup.py develop
python -m pip install --no-build-isolation -e .

# python setup.py install
python -m pip install --no-build-isolation .
```

Now, the `python setup.py develop` is a wrapper around `python -m pip install -e .` since `setuptools>=80.0`:

- pypa/setuptools#4955

`python setup.py install` is deprecated and will emit a warning during run. The warning will become an error on October 31, 2025.

- 9c4d383631/setuptools/command/install.py (L58-L67)

> ```python
> SetuptoolsDeprecationWarning.emit(
>     "setup.py install is deprecated.",
>     """
>     Please avoid running ``setup.py`` directly.
>     Instead, use pypa/build, pypa/installer or other
>     standards-based tools.
>     """,
>     see_url="https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html",
>     due_date=(2025, 10, 31),
> )
> ```

- pypa/setuptools#3849

Additional Resource:

- [Why you shouldn't invoke setup.py directly](https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156027
Approved by: https://github.com/ezyang
2025-07-09 11:24:27 +00:00
Xuehai Pan
ffe11b2bf2 [BE] fix typo in torch/distributed/tensor/: childs -> children (#156609)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156609
Approved by: https://github.com/wanchaol, https://github.com/cyyever
ghstack dependencies: #156311
2025-07-09 11:02:23 +00:00
Xuehai Pan
4cc8b60d1b [BE][1/16] fix typos in torch/ (#156311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156311
Approved by: https://github.com/albanD
2025-07-09 11:02:22 +00:00
PyTorch MergeBot
b83d8827bc Revert "Deprecate DataLoader pin_memory_device param (#146821)"
This reverts commit ab655816b8.

Reverted https://github.com/pytorch/pytorch/pull/146821 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/146821#issuecomment-3052093902))
2025-07-09 10:29:31 +00:00
Menglu Yu
e3f2597b45 [Optimus] Fix normalization pass in the aten IR (#157857)
Summary: We found there's a special case in recent APS model where the input tensor has smaller size compared to the split size. It will be automatically truncated in split.Tensor thus we add extra condition check for split_with_sizes when do the normalization.

Test Plan:
### unit
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:split_cat_fx_aten_passes -- test_split_aten_normalization
```

Buck UI: https://www.internalfb.com/buck2/2ecd1ef8-8efe-4245-b4c8-282c23645b3c
Test UI: https://www.internalfb.com/intern/testinfra/testrun/7599824648585787
Network: Up: 3.9GiB  Down: 9.2GiB  (reSessionID-1396c91e-0dd2-457b-a49b-a6ab1f2a7d8f)
Loading targets.   Remaining      0/5344                                                                                                              99617 dirs read, 1074949 targets declared
Analyzing targets. Remaining      0/123279                                                                                                            4988547 actions, 5966764 artifacts declared
Executing actions. Remaining      0/728058                                                                                                            209:52:59.9s exec time total
Command: test.     Finished 12466 local, 209448 remote, 1226 cache (1% hit)                                                                           42:10.5s exec time cached (0%)
Time elapsed: 26:07.6s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

### E2E

before fix:
aps-afoc_apop_pt2_v0-db2fe0449a

after fix:
aps-afoc_apop_pt2_v0-755ad0cdc6

Rollback Plan:

Differential Revision: D77961394

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157857
Approved by: https://github.com/anijain2305
2025-07-09 05:38:15 +00:00
Shangdi Yu
effe376db0 Adding aoti_standalone config (#157731)
Summary: When `compile_standalone` is True, we set `package_cpp_only` to True as well. We raise an error if  `package_cpp_only` is explicitly set to False in config.

Test Plan:
```
buck2 run  mode/dev-nosan fbcode//caffe2/test/inductor:test_aot_inductor -- -r  TestAOTInductorConfig
```

Rollback Plan:

Differential Revision: D77889754

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157731
Approved by: https://github.com/desertfire
2025-07-09 04:30:04 +00:00
Xu Han
fcbf7c749a [Windows][Inductor] normalize_path_separator compiler path (#157835)
Fixes #157673

For the call trace:
```
......

  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\common.py", line 2569, in reduction
    return self.kernel.reduction(dtype, src_dtype, reduction_type, value)
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 2155, in reduction
    self._gen_parallel_reduction_buffers(acc, acc_type, reduction_type, init_dtype)
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 1942, in _gen_parallel_reduction_buffers
    reduction_prefix_array(
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 335, in reduction_prefix_array
    if cpp_builder.is_msvc_cl()
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\cpp_builder.py", line 317, in is_msvc_cl
    return _is_msvc_cl(get_cpp_compiler())
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\cpp_builder.py", line 240, in _is_msvc_cl
    subprocess.check_output([cpp_compiler, "/help"], stderr=subprocess.STDOUT)
torch._inductor.exc.InductorError: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd3 in position 0: invalid continuation byte
```
On non-English language pack msvc environment, compiler path has raised `utf-8` issue. I add the `normalize_path_separator` to normalize the compiler path and avoid the issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157835
Approved by: https://github.com/jansel
2025-07-09 04:02:20 +00:00
soulitzer
8bda95228f [autograd] Avoid creating and recording event when unnecessary (#157503)
Today, we always create and record an events in two places:
1) Upon seeing the first producer, we record an event on the producer, and we wait for this event in two places: (1) when the engine goes to run the consumer, the consumer stream waits for this event. (2) prior to doing accumulation, the accumulation stream waits for this event.

2) After doing accumulation, we record an event on the accumulation stream and wait for this event in a single place: when the engine goes to run the consumer.

We do not actually need to record the event in the cases where the 1st producer stream is the same as the consumer and as the accumulation stream, and where the accumulation stream is the same as the consumer stream.

Removing this unnecessary create + record event should save a few us for each instance avoided.

Fixes https://github.com/pytorch/pytorch/issues/157407

----

Manual test plan:
- [x] @eqy to confirm perf is restored
- [x] Running the repro originally reported before/after the patch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157503
Approved by: https://github.com/eqy
ghstack dependencies: #155715
2025-07-09 03:36:14 +00:00
florian
8d070187e3 fix type hints for interpolation functions (#157202)
Fixes #129053

Previously interpolate had a bad signature and not correct type hints.
This fixes this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157202
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-07-09 03:11:37 +00:00
Jing Xu
c515385b0a Add Intel GPU info collection to the collect env script (#157351)
https://github.com/pytorch/pytorch/pull/137846 was mistakenly closed. Reopen a PR to land the PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157351
Approved by: https://github.com/guangyey, https://github.com/malfet
2025-07-09 03:01:41 +00:00
Hao Zhang(张浩)
ab8874bd26 Suppress warning when using native arch for jit loading cuda extensions. (#156923)
Previeusly, if users want to let pytorch determine the cuda arch when jit loading cuda extensions, they should left environment variable `TORCH_CUDA_ARCH_LIST` empty, but which will raise an warning. This commit add an option to set `TORCH_CUDA_ARCH_LIST=native`, to tell pytorch users want to use native cuda arch intentionally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156923
Approved by: https://github.com/ezyang
2025-07-09 02:51:20 +00:00
Tristan Rice
1b3d69b59f Work: block_current_stream API (#156883)
This implements a new `wait_stream` API in Work that matches how `wait` works for ProcessGroupNCCL for CPU based backends such as Gloo.

The idea is to support Gloo communication overlap in FSDPv2/HSDP with minimal changes to FSDP.

There was a previous attempt to make FSDPv2 use Work.wait but given the extensive stream semantics used it doesn't play nicely. https://github.com/pytorch/pytorch/pull/148780

This uses a "Baton" CUDA kernel which spinlocks on a pinned CPU tensor waiting for it to be set.

Test plan:

```
pytest test/distributed/test_c10d_gloo.py -v -k wait_stream
pytest test/distributed/test_c10d_nccl.py -v -k wait_stream
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156883
Approved by: https://github.com/kwen2501, https://github.com/fduwjj
2025-07-08 23:55:46 +00:00
Blaine Burton Rister
92f41ccc26 [Inductor] Support precomputed size args in the FX backend. (#157758)
# Feature
If a Triton kernel has a complicated indexing expression, Inductor may decide to precompute it on the host and pass it to the kernel as an argument. This happens in situations like broadcasts with dynamic shapes.

This PR adds support for this feature to Inductor's FX IR backend.

We generate FX IR for precomputed size args in 3 steps:
1. In `PythonWrapperCodegen`, this PR refactors the relevant code to use a `SymbolicCallArgLine` instead of raw Python strings. This stores a (symbol, expr) pair. (Prior to this PR, it was (str, expr), but changing this to a symbol makes it easier to do substitutions later on.)
2. In `WrapperFxCodegen`, keep a dict of {symbol: expr} arg defs which gets updated whenever we see a `SymbolicCallArgLine`.
3. When the FX backend sees a `KernelCallLine`, it uses this dict to replace symbolic call args with their definitions.

In the longer run, it might be desirable to emit FX nodes defining these symbolic call args. That way, we could reuse the size computation when the same kernel is called multiple times. However, I wasn't sure if there was an existing way to generate FX nodes from a sympy expression, and implementing that seemed like overkill for the present purposes.

# Test plan
Added a new CI test exercising this feature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157758
Approved by: https://github.com/jansel
2025-07-08 23:22:17 +00:00
Simon Fan
95bc3da9f8 [c10d] support dynamic shapes for all_to_all_single_autograd (#157521)
`all_to_all_single_autograd` is not an op, all the code executed until the `all_to_all_single` dispatch is visible to the compiler. This means the `all_to_all_single_autograd` wrapper code must support symints in order to be traceable with dynamic shapes.

FIXES https://github.com/pytorch/pytorch/issues/157479

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157521
Approved by: https://github.com/wconstab
2025-07-08 23:19:59 +00:00
Sidharth
9f18482d41 [dynamo] removing string literals for weblink generation (#157820)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157820
Approved by: https://github.com/williamwen42
2025-07-08 23:08:06 +00:00
Sam Larsen
7a41f20794 [inductor] Quiesce Triton compile worker pool after each dynamo compile (#156187)
For internal usages, keeping the Triton compile worker pool active for the lifetime of the process has caused some challenges, e.g., it slows down and muddies profiling due to the huge number of threads on a box: N threads = 8 ranks * 32 subprocs * M threads started by torch. Also, each subproc can use more than 1GB each. This PR adds the functionality to shutdown worker subprocs after each dynamo compile when using the SubprocPool implementation. The idea is to leave the main sidecar process running, but signal it to tear down its internal ProcessPoolExecutor when compile is finished. Restarting the ProcessPoolExecutor is relatively fast, e.g., 500ms because the ProcessPoolExecutor forks from the sidecar. Changes:
* Do not start the ProcessPoolExecutor automatically when compile_fx is imported. Instead, start the sidecar process only. The sidecar process imports torch, so is still slow to start.
* Introduce wakeup() and quiesce() calls to the implementation to start and stop the ProcessPoolExecutor.
* Add a context manager to automatically quiesce() at the end of dynamo compilation.
* Signal a wakeup() in compile_fx only when we have cuda devices.
* Add a killswitch so we can turn of quiescing.

Testing:
For correctness, the stacked change at https://github.com/pytorch/pytorch/pull/156534 enables the feature for OSS so it's exercised in CI.

For performance, because of recent compile-time variance (see https://github.com/pytorch/pytorch/issues/152566), it's pretty hard to glean whether there's a regression....

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

The wins (mostly for inference) don't make sense, but I'm also skeptical of the losses (mostly for training). I can't repro any of the slowdowns locally. Furthermore, check out the benchmarking results for the stacked diff, which actually enables the quiescing functionality for OSS. That should only slow down compile since there can only be overhead to stop and start the workers. But the results are somehow better:

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156187
Approved by: https://github.com/aorenste, https://github.com/jansel
2025-07-08 22:53:13 +00:00
Animesh Jain
178fe7aa98 [dynamo][fsdp] Consistent behavior of int attributes (#157262)
Reimpl of https://github.com/pytorch/pytorch/pull/150954

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157262
Approved by: https://github.com/bdhirsh
2025-07-08 22:11:33 +00:00
PyTorch MergeBot
2e14069081 Revert "[DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)"
This reverts commit 777eca9f16.

Reverted https://github.com/pytorch/pytorch/pull/157216 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail a distributed test in trunk ([comment](https://github.com/pytorch/pytorch/pull/157216#issuecomment-3050258896))
2025-07-08 20:48:51 +00:00
angelayi
391473cca0 [export] Fix lift constants bug (#157719)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157719
Approved by: https://github.com/yushangdi
2025-07-08 20:33:53 +00:00
lucasb-eyer
b9dc2fa4f7 Add legacy note to autograd.profiler doc. (#157459)
Via google search I got to `torch.autograd.profiler` and implemented my code with it. Only to be taken by surprise finding `torch.profile.profiler`, which has a note saying the autograd one is legacy.

This just adds such note to `autograd.profiler` to avoid this confusion and waste of time to future people in my situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157459
Approved by: https://github.com/sraikund16
2025-07-08 20:33:23 +00:00
zpcore
a73d9e0aec Fix einsum strategy shard dim > ndim (#157593)
Previously we didn't constrain Shard dim to be <= the tensor's ndim. This cause an invalid strategy like `(RR, RS(2)) -> RS(2),` for einsum `bmk,kn->bmn` on the 2d mesh.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157593
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2025-07-08 20:27:17 +00:00
Ankita George
dea4864ce0 HF loads dcp - don't do a full deserialize on every file (#157715)
Summary: These changes in D76442012 got reverted after the PR landed due to aps_models/ads/launchers/pearl/tests/ne/e2e_deterministic_tests:pearl_e2e_ne_tests failing with `Config not loaded due to no timely response from configerator. Likely configerator_proxy or falcon_proxy are not healthy`, but that test failing is definitely transient and unrelated to my changes, so re-creating the diff

Test Plan:
ensure tests pass

Rollback Plan:

Differential Revision: D77871099

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157715
Approved by: https://github.com/meetv18
2025-07-08 18:13:27 +00:00
Zeina Migeed
4f5be56612 [Pyrefly][Refactor] Replace dict() calls with literal dict syntax for improved readability (#157735)
There are 31 places that I spotted which construct literal dictionaries.

This PR refactors dictionary construction by replacing` dict(...) `calls with `literal {...}` syntax where applicable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157735
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-08 18:10:33 +00:00
Howard Huang
0f31445139 Add stack trace of exception to MultiProcContinousTest (#157589)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157589
Approved by: https://github.com/Skylion007
2025-07-08 17:54:35 +00:00
Shangdi Yu
5b4e0255d7 Check FakeScriptObject in _resolve_name_collision (#157736)
Summary:
Fix https://github.com/pytorch/pytorch/issues/157401

torch.equal cannot handle FakeScriptObject inputs.

Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r  test_aoti_torchbind_name_collision
```

Rollback Plan:

Differential Revision: D77894081

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157736
Approved by: https://github.com/angelayi
2025-07-08 17:51:46 +00:00
Tianyu Liu
ed911747c2 [dtensor] add support for fused optimizer with parameters across multiple meshes (#157682)
We are seeing more and more use cases where parameters in a model (under the same optimizer group) are put on different meshes. E.g.
- when FSDP and TP are both applied, some parameters are sharded only on the FSDP mesh but not TP mesh (see https://github.com/pytorch/pytorch/pull/153268).
- in [dp2ep Expert Parallel](https://github.com/pytorch/torchtitan/pull/1324), the routed experts are sharded on the (global FSDP \ EP) mesh for smaller FSDP and on the EP mesh for EP, whereas other params are sharded on the global FSDP mesh for FSDP.

This PR is, in some sense, a continuation of https://github.com/pytorch/pytorch/pull/147869 to tackle the problem when fused optimizers are used. In such cases, the [`fused_adam`](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml#L15786) / `fused_adamw` has a scalar tensor arg `state_steps` which gets automatically cast to DTensor on the default [`compute_mesh`](https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/_dispatch.py#L350) (one of the multiple meshes), even though the it could correspond to different meshes.

To avoid hitting the cross-mesh propagation exception in `common_pointwise_strategy` and followup redistribute problems, we manually set the target mesh and placements to be the same as input mesh and placements, so that no redistribute will be triggered. This also helps bypass the situation where [`generate_redistribute_costs`](https://github.com/pytorch/pytorch/pull/157682/files#diff-eea32a36dd2d4e58307bc5229402e48048b2ecaef64a7c085495fba1ee10ac89R597) returns infinite cost due to cross mesh redistribute.

Moreover, this PR has minimal scope (restricted to the `fused_ops`) and doesn't need to modify other files such as `_sharding_prop.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157682
Approved by: https://github.com/wanchaol
2025-07-08 15:58:30 +00:00
Tianyu Liu
777eca9f16 [DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)
This is to unblock "dp2ep" Expert Parallel + TP integration in torchtitan https://github.com/pytorch/torchtitan/pull/1324.

It does two things:
1. Slightly modifies the glue code for FSDP/HSDP + TP to work with FSDP/HSDP + EP and FSDP/HSDP + EP + TP. I kept the name `FSDPParam._tp_spec` to make the change minimal. We can consider renaming it in the future if it confuses people, but I heard @wanchaol has a plan to rewrite DTensor strided sharding entirely.
2. Lifts the check of `_validate_tp_mesh_dim` for `torch.distributed.tensor.parallel.parallelize_module`, as in EP or EP+TP this check is too strict. In particular it assumes a DeviceMesh must have `mesh_dim_names` which is not always true. I'm also removing the file `torch/distributed/tensor/parallel/_utils.py` it belongs entirely, as the other check `_deprecate_warnings`, added two years ago, is not used any more.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157216
Approved by: https://github.com/wanchaol, https://github.com/weifengpy
2025-07-08 15:57:37 +00:00
Steven Troxler
5dc75f72d4 Simplify the base classes of _PyFutureMeta (#157757)
Summary:

I'm fairly sure the use of a custom metaclass is a holdover from pre-3.7 where Generic used a custom metaclass so we had to use multiple inheritance to avoid import-time failures.

At this point, `type(Generic)` is just `type` so it isn't needed, and we will get the least metaclass from our base classes, which means the `type(torch._C.Future)` isn't needed either, it will happen automatically just by inheritance.

Test Plan:

I'm fairly confident from local testing that this should be a no-op.

But also, Pytorch CI should give us pretty strong signal that this change doesn't break anything in case there's some edge case I missed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157757
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-08 15:39:56 +00:00
Nikita Shulga
f88d7a7a34 [BE] Do not add . after troubleshooting_url (#157753)
As it gets included into auto-hrefed URLs in say github logs to point to non existing location

For example from https://github.com/pytorch/pytorch/actions/runs/16130448756/job/45517004735?pr=157749#step:18:27
> W0708 00:23:20.150000 67082 torch/_dynamo/convert_frame.py:1047] [0/8] To diagnose recompilation issues, see [https://pytorch.org/docs/main/torch.compiler_troubleshooting.html.](https://pytorch.org/docs/main/torch.compiler_troubleshooting.html.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157753
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-07-08 15:38:24 +00:00
Xuan Zhang
86670b39fa [PT2][memory] mutation size correctness (#157562)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157562
Approved by: https://github.com/yf225
2025-07-08 14:02:20 +00:00
rzou
b9afdd9bcc Add flag to fx.passes.split_module to normalize input names (#157733)
This is useful for vLLM, which runs AOTAutograd directly on graphs after
they have been split.

I created a new flag for this instead of reusing
`keep_original_node_name` (please let me know if you think I should reuse this).
The reasoning is:
- The names of the placeholder nodes is different from the targets of
  the placehoder nodes. The targets are the actual input names.
- Backwards compatibility: this API has been out for ~4 years, it
  looks public, and it has extensive public use. For example, this change
  would actually be BC-breaking to vLLM (they rely on the subgraph input
  names being different at the moment).

Test Plan:
- new tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157733
Approved by: https://github.com/ezyang
2025-07-08 13:47:24 +00:00
zeshengzong
ab655816b8 Deprecate DataLoader pin_memory_device param (#146821)
Following [ #131858 suggestion](https://github.com/pytorch/pytorch/pull/131858#pullrequestreview-2517760602) to optimize DataLoader code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146821
Approved by: https://github.com/divyanshk

Co-authored-by: Divyansh Khanna <divyanshkhanna09@gmail.com>
2025-07-08 09:24:53 +00:00
pralay
5430990bd7 Added philox based RNG context for HPU device in Dtensor scenarios (#156581)
In this PR, we are enabling `HPU` device-specific function calls for random operations. These calls will manage the setting and unsetting of the `context of Random Number Generator`.
While HPU devices typically utilize a `Mersenne-based RNG`, Dtensor-specific random operations employ an `offset-based (Philox) RNG tracker` which is specifically integrated with `CUDA` in scope.
To integrate a similar offset-based RNG tracker within the `HPU backend`, a backend-specific device handle function is necessary to identify the execution context of these random operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156581
Approved by: https://github.com/jeromean, https://github.com/wanchaol
2025-07-08 08:50:24 +00:00
IvanKobzarev
8134684d44 [inductor collectives] sink waits iterative (#157708)
Differential Revision: [D77861763](https://our.internmc.facebook.com/intern/diff/D77861763)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157708
Approved by: https://github.com/wconstab
ghstack dependencies: #157706
2025-07-08 07:17:10 +00:00
Yu, Guangye
1b58e7adab fix storage use_count (#157694)
# Motivation
https://github.com/pytorch/pytorch/pull/155451 decoupled `torch._C._storage_Use_Count` from CUDA and introduced a corresponding unit test:
815545f2dd/test/test_torch.py (L257-L262)
However, this test fails when PyTorch is built with debug assertions enabled. @clee2000 disabled this UT in https://github.com/pytorch/pytorch/pull/156731. The root cause is that `_cdata` is obtained from an `intrusive_ptr`, not a `weak_intrusive_ptr`. As a result, calling `c10::weak_intrusive_ptr::use_count` on it triggers the internal assertion:
815545f2dd/c10/util/intrusive_ptr.h (L912-L917)
For example:
```python
a = torch.randn(10, device=device) # refcount=1, weakcount=1
prev_cf = torch._C._storage_Use_Count(a.untyped_storage()._cdata) # violate the assertation
```
This violates the expected invariant inside `weak_intrusive_ptr::use_count`, which assumes the pointer was originally constructed from a valid `weak_intrusive_ptr`. Actually, `storage_impl` is obtained from an `intrusive_ptr`.
815545f2dd/torch/csrc/Module.cpp (L2105-L2109)

# Solution
Use `c10::intrusive_ptr::use_count` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157694
Approved by: https://github.com/albanD
2025-07-08 05:53:12 +00:00
drisspg
987314aa96 Split batch-num-heads grid dim between y and z (#157745)
for #157018

doesn't totally fix the problem but should help alot

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157745
Approved by: https://github.com/Chillee
2025-07-08 05:17:43 +00:00
cyy
3ee8828c87 [1/N] Don't use CUDA.cmake module (#157188)
Small changes before removing CUDA.cmake.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157188
Approved by: https://github.com/ezyang
2025-07-08 03:05:35 +00:00
zpcore
12f9942b10 Fix slice op redistribute_cost compute (#157178)
For slice op backward, my understanding is that the `redistribute_cost` attribute is incorrectly assigned to previous placement strategy: 0decd966af/torch/distributed/tensor/_ops/_tensor_ops.py (L399-L400)

The mistake is hard to be tested since we didn't enforce the `redistribute_cost` for `strategy.strategies` with size one: 2815ade9a8/torch/distributed/tensor/_sharding_prop.py (L491-L499)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157178
Approved by: https://github.com/XilunWu
2025-07-08 02:28:59 +00:00
Ke Wen
c5589074e6 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-08 01:21:59 +00:00
PyTorch MergeBot
19a01382bc Revert "[SymmMem] find_path does not search /usr/local/lib (#157695)"
This reverts commit 3effe0c293.

Reverted https://github.com/pytorch/pytorch/pull/157695 on behalf of https://github.com/kwen2501 due to Changing it to be landable on 2.8 branch ([comment](https://github.com/pytorch/pytorch/pull/157695#issuecomment-3047020152))
2025-07-08 01:12:01 +00:00
zeshengzong
df72078fe1 [dynamo] Replace unimplemented with unimplemented_v2 in torch/_dynamo/variables/torch.py (#157344)
Fixes part of #147913

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157344
Approved by: https://github.com/williamwen42

Co-authored-by: William Wen <william.wen42@gmail.com>
2025-07-08 00:46:56 +00:00
Bob Ren
60b41de0ca remove allow-untyped-defs from torch/ao/nn/quantized/modules/rnn.py (#157234)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157234
Approved by: https://github.com/jingsh
ghstack dependencies: #157231, #157232
2025-07-08 00:11:52 +00:00
Bob Ren
e38a335d7f remove allow-untyped-defs from torch/backends/cusparselt/__init__.py (#157232)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157232
Approved by: https://github.com/jingsh
ghstack dependencies: #157231
2025-07-08 00:11:52 +00:00
Bob Ren
9d8cf24b3b remove allow-untyped-defs from torch/_classes.py (#157231)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157231
Approved by: https://github.com/jingsh
2025-07-08 00:11:52 +00:00
James Wu
be56a8d7ac Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 23:57:17 +00:00
Ke Wen
3effe0c293 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-07 23:16:45 +00:00
IvanKobzarev
2fde2090d0 [inductor_collectives] Make reorder_collectives_preserve_peak pass grouping nodes (#157706)
Differential Revision: [D77861765](https://our.internmc.facebook.com/intern/diff/D77861765)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157706
Approved by: https://github.com/wconstab
2025-07-07 23:13:58 +00:00
rzou
5d8d126249 Fix einops x torch.compile interaction (#157600)
Fixes https://github.com/pytorch/pytorch/issues/157451

If/when einops releases a version greater than 0.8.1, it will just break
(without this patch).

The history is:
- Between 2.6 and 2.7, we tried to delete the einops import (#142847)
- That didn't work so well, so we applied a hotfix in 2.7.1. (#153925)
- The hotfix wasn't completely correct (0.8.1 is the latest version of
  einops, so the condition in the hotfix just always evaluates to True!)
- It turns out we didn't need to delete the einops import. We already
  do not eagerly import einops.
- I reverted the code back to the state it was in in 2.6.
  https://github.com/pytorch/pytorch/blob/release/2.6/torch/_dynamo/decorators.py

Test Plan:
- We have testing in CI for einops 0.6.1, 0.7.0, and 0.8.1. Wait for CI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157600
Approved by: https://github.com/guilhermeleobas, https://github.com/anijain2305
ghstack dependencies: #157416
2025-07-07 23:04:02 +00:00
Gabriel Ferns
7e83d50845 Inductor logging + analysis of torch.profile (#149697)
Prereqs:
 - https://github.com/pytorch/pytorch/pull/152708

Features:
1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses.
1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`.
1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`.
1. Extends Triton `torch.profiler` logging to `DebugAutotuner`.
1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side:
```python
Device(NVIDIA H100, 0):
 Kernel Name                              | resnet Kernel Count | resnet FLOPS       | resnet bw gbps        | resnet Dur (ms)    | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS    | newresnet bw gbps     | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth %
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 triton_poi_fused__native_batch_norm_legi | 24                  | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                       | 0.003401572611382541        | 24                     | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                          | 0.003401572611382541
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142                 | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583     | 0.007716441266265022        | 142                    | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583        | 0.007716441266265022
 triton_red_fused__native_batch_norm_legi | 39                  | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                       | 0.004176126863316074        | 39                     | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                          | 0.004176126863316074
 triton_poi_fused__native_batch_norm_legi | 25                  | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                       | 0.009499718184339253        | 25                     | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                          | 0.009499718184339253
 void cutlass::Kernel2<cutlass_80_tensoro | 98                  | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874     | 0.012827592254037562        | 98                     | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874        | 0.012827592254037562
 triton_red_fused__native_batch_norm_legi | 73                  | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                       | 0.009628003963020014        | 73                     | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                          | 0.009628003963020014
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                       | 0.043257347302946926        | 15                     | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                          | 0.043257347302946926
 void cutlass::Kernel2<cutlass_80_tensoro | 186                 | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027     | 0.007961586274361157        | 186                    | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027        | 0.007961586274361157
 triton_poi_fused__native_batch_norm_legi | 33                  | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                       | 0.044550915039384846        | 33                     | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                          | 0.044550915039384846
 triton_red_fused__native_batch_norm_legi | 29                  | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                       | 0.007630624036606301        | 29                     | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                          | 0.007630624036606301
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                       | 0.01752406619162008         | 13                     | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                          | 0.01752406619162008
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 0.41409928846284      | 2.853588235294117  | 0                       | 0.012361172789935523        | 34                     | 0                  | 0.41409928846284      | 2.853588235294117  | 0                          | 0.012361172789935523
 triton_per_fused__native_batch_norm_legi | 34                  | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                       | 0.0034941238826919864       | 34                     | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                          | 0.0034941238826919864
 triton_poi_fused__native_batch_norm_legi | 16                  | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                       | 0.005136672596156592        | 16                     | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                          | 0.005136672596156592
 triton_per_fused__native_batch_norm_legi | 30                  | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                       | 0.007879744244842555        | 30                     | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                          | 0.007879744244842555
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100                 | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531     | 0.005819245035648175        | 100                    | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531        | 0.005819245035648175
 triton_poi_fused__native_batch_norm_legi | 8                   | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                       | 0.029415213809625928        | 8                      | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                          | 0.029415213809625928
 void cublasLt::splitKreduce_kernel<32, 1 | 56                  | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628     | 0.024806865808245714        | 56                     | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628        | 0.024806865808245714
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                       | 0.02968359094286896         | 23                     | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                          | 0.02968359094286896
 triton_per_fused__native_batch_norm_legi | 10                  | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                       | 0.00545313748934644         | 10                     | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                          | 0.00545313748934644
 triton_poi_fused__native_batch_norm_legi | 10                  | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                       | 0.009459622642884923        | 10                     | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                          | 0.009459622642884923
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                       | 0.03421974596124114         | 34                     | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                          | 0.03421974596124114
 void cask_plugin_cudnn::xmma_cudnn::init | 44                  | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194     | 0.06167532194133924         | 44                     | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194        | 0.06167532194133924
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95                  | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802     | 0.014014750913273854        | 95                     | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802        | 0.014014750913273854
 triton_per_fused__native_batch_norm_legi | 41                  | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                       | 0.002037513395819492        | 41                     | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                          | 0.002037513395819492
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                       | 0.0026292999141582997       | 23                     | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                          | 0.0026292999141582997
 triton_per_fused__native_batch_norm_legi | 40                  | 0                  | 0.18179321034952417   | 4.556825           | 0                       | 0.005426662995508183        | 40                     | 0                  | 0.18179321034952417   | 4.556825           | 0                          | 0.005426662995508183
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                       | 0.017574373598370836        | 15                     | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                          | 0.017574373598370836
 void cutlass::Kernel2<cutlass_80_tensoro | 38                  | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546      | 0.007659474756834           | 38                     | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546         | 0.007659474756834
 triton_poi_fused__native_batch_norm_legi | 21                  | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                       | 0.017441376040091088        | 21                     | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                          | 0.017441376040091088
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                       | 0.0034356313950705724       | 16                     | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                          | 0.0034356313950705724
 triton_poi_fused__native_batch_norm_legi | 14                  | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                       | 0.00508857313505646         | 14                     | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                          | 0.00508857313505646
 triton_poi_fused__native_batch_norm_legi | 58                  | 0                  | 2.307520779930795     | 8.190706896551722  | 0                       | 0.06888121731136704         | 58                     | 0                  | 2.307520779930795     | 8.190706896551722  | 0                          | 0.06888121731136704
 triton_per_fused__native_batch_norm_legi | 29                  | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                       | 0.001111738775280038        | 29                     | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                          | 0.001111738775280038
 triton_poi_fused__native_batch_norm_legi | 20                  | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                       | 0.0014154327747549007       | 20                     | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                          | 0.0014154327747549007
 triton_per_fused__native_batch_norm_legi | 25                  | 0                  | 0.13357016893727824   | 3.37536            | 0                       | 0.003987169222008305        | 25                     | 0                  | 0.13357016893727824   | 3.37536            | 0                          | 0.003987169222008305
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                       | 0.009223469457612694        | 13                     | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                          | 0.009223469457612694
 triton_poi_fused__native_batch_norm_legi | 17                  | 0                  | 0.3129385387909844    | 2.673              | 0                       | 0.009341448919133863        | 17                     | 0                  | 0.3129385387909844    | 2.673              | 0                          | 0.009341448919133863
 triton_per_fused__native_batch_norm_legi | 19                  | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                       | 0.0066136363060691275       | 19                     | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                          | 0.0066136363060691275
 std::enable_if<!(false), void>::type int | 23                  | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447   | 0.030203868944223014        | 23                     | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447      | 0.030203868944223014
 triton_poi_fused_add_copy__38            | 56                  | 0                  | 0                     | 2.132482142857143  | 0                       | 0                           | 56                     | 0                  | 0                     | 2.132482142857143  | 0                          | 0
 triton_poi_fused_convolution_0           | 18                  | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                       | 0.012972719640279667        | 18                     | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                          | 0.012972719640279667
 triton_poi_fused_convolution_1           | 17                  | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                       | 0.0008601884319153051       | 17                     | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                          | 0.0008601884319153051
 void convolve_common_engine_float_NHWC<f | 44                  | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169     | 0.0007382250748795709       | 44                     | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169        | 0.0007382250748795709
 triton_per_fused__native_batch_norm_legi | 12                  | 0                  | 0.6809930918986744    | 4.82675            | 0                       | 0.020328151996975356        | 12                     | 0                  | 0.6809930918986744    | 4.82675            | 0                          | 0.020328151996975356
 triton_per_fused__native_batch_norm_legi | 14                  | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                       | 0.0008606061486377935       | 14                     | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                          | 0.0008606061486377935
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.0014658988233201874 | 2.098              | 0                       | 4.375817383045335e-05       | 16                     | 0                  | 0.0014658988233201874 | 2.098              | 0                          | 4.375817383045335e-05
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                       | 0.02963073785159611         | 13                     | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                          | 0.02963073785159611
 triton_poi_fused__native_batch_norm_legi | 9                   | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                       | 0.03883228983781048         | 9                      | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                          | 0.03883228983781048
 void at::native::(anonymous namespace):: | 98                  | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                       | 0.0027386076458833994       | 98                     | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                          | 0.0027386076458833994
 void at::native::vectorized_elementwise_ | 7                   | 0                  | 0                     | 1.7278571428571428 | 0                       | 0                           | 7                      | 0                  | 0                     | 1.7278571428571428 | 0                          | 0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-07-07 22:13:34 +00:00
Shangdi Yu
6f05d58f2b [AOTI] Split aoti_runtime/model.h to prepare for model static linking (#157592)
Summary:
Prepare for https://github.com/pytorch/pytorch/pull/157129.

We split the file so we can re-use `model.h` part for codegen a separate header for each model in static linkage.

Test Plan:
CI

Rollback Plan:

Differential Revision: D77761249

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157592
Approved by: https://github.com/desertfire
2025-07-07 22:13:22 +00:00