Commit Graph

34799 Commits

Author SHA1 Message Date
Xuehai Pan
4dce5b71a0 [build] modernize build-frontend: python setup.py develop/install -> [uv ]pip install --no-build-isolation [-e ]. (#156027)
Modernize the development installation:

```bash
# python setup.py develop
python -m pip install --no-build-isolation -e .

# python setup.py install
python -m pip install --no-build-isolation .
```

Now, the `python setup.py develop` is a wrapper around `python -m pip install -e .` since `setuptools>=80.0`:

- pypa/setuptools#4955

`python setup.py install` is deprecated and will emit a warning during run. The warning will become an error on October 31, 2025.

- 9c4d383631/setuptools/command/install.py (L58-L67)

> ```python
> SetuptoolsDeprecationWarning.emit(
>     "setup.py install is deprecated.",
>     """
>     Please avoid running ``setup.py`` directly.
>     Instead, use pypa/build, pypa/installer or other
>     standards-based tools.
>     """,
>     see_url="https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html",
>     due_date=(2025, 10, 31),
> )
> ```

- pypa/setuptools#3849

Additional Resource:

- [Why you shouldn't invoke setup.py directly](https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156027
Approved by: https://github.com/ezyang
2025-07-09 11:24:27 +00:00
Xuehai Pan
fc0376e8b1 [BE][2/6] fix typos in test/ (test/test_*.py) (#157636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157636
Approved by: https://github.com/yewentao256, https://github.com/mlazos
ghstack dependencies: #156311, #156609
2025-07-09 11:02:23 +00:00
Xuehai Pan
4cc8b60d1b [BE][1/16] fix typos in torch/ (#156311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156311
Approved by: https://github.com/albanD
2025-07-09 11:02:22 +00:00
Syed Tousif Ahmed
f5bbaa2253 Fixes typo in nccl_window_registration test (#157293)
As mentioned here: https://github.com/pytorch/pytorch/pull/155134#discussion_r2175605192

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157293
Approved by: https://github.com/Skylion007
2025-07-09 11:01:18 +00:00
thenumberouscode
6f23f53599 [inductor] fix tensor.to(uint8) error when tensor src type is float (#157267)
The cpu inductor processes .to(torch.uint8) incorrectly, leading to numerical inconsistencies. The convert_float_to_int8 function may return incorrect results for negative inputs, such as -2.xx, when the data type is uint8_t, producing 0 instead of 255. This issue stems from the clamping logic; we should avoid converting min_val to uint8_t too early
Fixes https://github.com/pytorch/pytorch/issues/156788
@leslie-fang-intel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157267
Approved by: https://github.com/leslie-fang-intel
2025-07-09 07:03:38 +00:00
Menglu Yu
e3f2597b45 [Optimus] Fix normalization pass in the aten IR (#157857)
Summary: We found there's a special case in recent APS model where the input tensor has smaller size compared to the split size. It will be automatically truncated in split.Tensor thus we add extra condition check for split_with_sizes when do the normalization.

Test Plan:
### unit
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:split_cat_fx_aten_passes -- test_split_aten_normalization
```

Buck UI: https://www.internalfb.com/buck2/2ecd1ef8-8efe-4245-b4c8-282c23645b3c
Test UI: https://www.internalfb.com/intern/testinfra/testrun/7599824648585787
Network: Up: 3.9GiB  Down: 9.2GiB  (reSessionID-1396c91e-0dd2-457b-a49b-a6ab1f2a7d8f)
Loading targets.   Remaining      0/5344                                                                                                              99617 dirs read, 1074949 targets declared
Analyzing targets. Remaining      0/123279                                                                                                            4988547 actions, 5966764 artifacts declared
Executing actions. Remaining      0/728058                                                                                                            209:52:59.9s exec time total
Command: test.     Finished 12466 local, 209448 remote, 1226 cache (1% hit)                                                                           42:10.5s exec time cached (0%)
Time elapsed: 26:07.6s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

### E2E

before fix:
aps-afoc_apop_pt2_v0-db2fe0449a

after fix:
aps-afoc_apop_pt2_v0-755ad0cdc6

Rollback Plan:

Differential Revision: D77961394

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157857
Approved by: https://github.com/anijain2305
2025-07-09 05:38:15 +00:00
Shangdi Yu
effe376db0 Adding aoti_standalone config (#157731)
Summary: When `compile_standalone` is True, we set `package_cpp_only` to True as well. We raise an error if  `package_cpp_only` is explicitly set to False in config.

Test Plan:
```
buck2 run  mode/dev-nosan fbcode//caffe2/test/inductor:test_aot_inductor -- -r  TestAOTInductorConfig
```

Rollback Plan:

Differential Revision: D77889754

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157731
Approved by: https://github.com/desertfire
2025-07-09 04:30:04 +00:00
Bin Bao
e5edd013ab [AOTI] Skip test_simple_multi_arch_embed_kernel_binary_True_cuda (#157301)
Summary: For https://github.com/pytorch/pytorch/issues/156930, still no clue on what went wrong as it is not reproducible locally, but somehow the problem seems only exists when embed_kernel_binary is True. Let's skip it for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157301
Approved by: https://github.com/yushangdi
2025-07-09 01:18:36 +00:00
xinan.lin
75f489d37f [Break XPU][Inductor UT] Align tolerance of newly added case with cuda. (#157702)
Align tolerance with cuda for the newly added case `test_comprehensive_logcumsumexp_xpu_float16` in #157512.

Fixes #157697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157702
Approved by: https://github.com/jansel
2025-07-09 00:55:01 +00:00
Tristan Rice
1b3d69b59f Work: block_current_stream API (#156883)
This implements a new `wait_stream` API in Work that matches how `wait` works for ProcessGroupNCCL for CPU based backends such as Gloo.

The idea is to support Gloo communication overlap in FSDPv2/HSDP with minimal changes to FSDP.

There was a previous attempt to make FSDPv2 use Work.wait but given the extensive stream semantics used it doesn't play nicely. https://github.com/pytorch/pytorch/pull/148780

This uses a "Baton" CUDA kernel which spinlocks on a pinned CPU tensor waiting for it to be set.

Test plan:

```
pytest test/distributed/test_c10d_gloo.py -v -k wait_stream
pytest test/distributed/test_c10d_nccl.py -v -k wait_stream
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156883
Approved by: https://github.com/kwen2501, https://github.com/fduwjj
2025-07-08 23:55:46 +00:00
Blaine Burton Rister
92f41ccc26 [Inductor] Support precomputed size args in the FX backend. (#157758)
# Feature
If a Triton kernel has a complicated indexing expression, Inductor may decide to precompute it on the host and pass it to the kernel as an argument. This happens in situations like broadcasts with dynamic shapes.

This PR adds support for this feature to Inductor's FX IR backend.

We generate FX IR for precomputed size args in 3 steps:
1. In `PythonWrapperCodegen`, this PR refactors the relevant code to use a `SymbolicCallArgLine` instead of raw Python strings. This stores a (symbol, expr) pair. (Prior to this PR, it was (str, expr), but changing this to a symbol makes it easier to do substitutions later on.)
2. In `WrapperFxCodegen`, keep a dict of {symbol: expr} arg defs which gets updated whenever we see a `SymbolicCallArgLine`.
3. When the FX backend sees a `KernelCallLine`, it uses this dict to replace symbolic call args with their definitions.

In the longer run, it might be desirable to emit FX nodes defining these symbolic call args. That way, we could reuse the size computation when the same kernel is called multiple times. However, I wasn't sure if there was an existing way to generate FX nodes from a sympy expression, and implementing that seemed like overkill for the present purposes.

# Test plan
Added a new CI test exercising this feature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157758
Approved by: https://github.com/jansel
2025-07-08 23:22:17 +00:00
Simon Fan
95bc3da9f8 [c10d] support dynamic shapes for all_to_all_single_autograd (#157521)
`all_to_all_single_autograd` is not an op, all the code executed until the `all_to_all_single` dispatch is visible to the compiler. This means the `all_to_all_single_autograd` wrapper code must support symints in order to be traceable with dynamic shapes.

FIXES https://github.com/pytorch/pytorch/issues/157479

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157521
Approved by: https://github.com/wconstab
2025-07-08 23:19:59 +00:00
Sam Larsen
7a41f20794 [inductor] Quiesce Triton compile worker pool after each dynamo compile (#156187)
For internal usages, keeping the Triton compile worker pool active for the lifetime of the process has caused some challenges, e.g., it slows down and muddies profiling due to the huge number of threads on a box: N threads = 8 ranks * 32 subprocs * M threads started by torch. Also, each subproc can use more than 1GB each. This PR adds the functionality to shutdown worker subprocs after each dynamo compile when using the SubprocPool implementation. The idea is to leave the main sidecar process running, but signal it to tear down its internal ProcessPoolExecutor when compile is finished. Restarting the ProcessPoolExecutor is relatively fast, e.g., 500ms because the ProcessPoolExecutor forks from the sidecar. Changes:
* Do not start the ProcessPoolExecutor automatically when compile_fx is imported. Instead, start the sidecar process only. The sidecar process imports torch, so is still slow to start.
* Introduce wakeup() and quiesce() calls to the implementation to start and stop the ProcessPoolExecutor.
* Add a context manager to automatically quiesce() at the end of dynamo compilation.
* Signal a wakeup() in compile_fx only when we have cuda devices.
* Add a killswitch so we can turn of quiescing.

Testing:
For correctness, the stacked change at https://github.com/pytorch/pytorch/pull/156534 enables the feature for OSS so it's exercised in CI.

For performance, because of recent compile-time variance (see https://github.com/pytorch/pytorch/issues/152566), it's pretty hard to glean whether there's a regression....

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

The wins (mostly for inference) don't make sense, but I'm also skeptical of the losses (mostly for training). I can't repro any of the slowdowns locally. Furthermore, check out the benchmarking results for the stacked diff, which actually enables the quiescing functionality for OSS. That should only slow down compile since there can only be overhead to stop and start the workers. But the results are somehow better:

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156187
Approved by: https://github.com/aorenste, https://github.com/jansel
2025-07-08 22:53:13 +00:00
Animesh Jain
178fe7aa98 [dynamo][fsdp] Consistent behavior of int attributes (#157262)
Reimpl of https://github.com/pytorch/pytorch/pull/150954

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157262
Approved by: https://github.com/bdhirsh
2025-07-08 22:11:33 +00:00
angelayi
391473cca0 [export] Fix lift constants bug (#157719)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157719
Approved by: https://github.com/yushangdi
2025-07-08 20:33:53 +00:00
zpcore
a73d9e0aec Fix einsum strategy shard dim > ndim (#157593)
Previously we didn't constrain Shard dim to be <= the tensor's ndim. This cause an invalid strategy like `(RR, RS(2)) -> RS(2),` for einsum `bmk,kn->bmn` on the 2d mesh.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157593
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2025-07-08 20:27:17 +00:00
Ankita George
dea4864ce0 HF loads dcp - don't do a full deserialize on every file (#157715)
Summary: These changes in D76442012 got reverted after the PR landed due to aps_models/ads/launchers/pearl/tests/ne/e2e_deterministic_tests:pearl_e2e_ne_tests failing with `Config not loaded due to no timely response from configerator. Likely configerator_proxy or falcon_proxy are not healthy`, but that test failing is definitely transient and unrelated to my changes, so re-creating the diff

Test Plan:
ensure tests pass

Rollback Plan:

Differential Revision: D77871099

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157715
Approved by: https://github.com/meetv18
2025-07-08 18:13:27 +00:00
Shangdi Yu
5b4e0255d7 Check FakeScriptObject in _resolve_name_collision (#157736)
Summary:
Fix https://github.com/pytorch/pytorch/issues/157401

torch.equal cannot handle FakeScriptObject inputs.

Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r  test_aoti_torchbind_name_collision
```

Rollback Plan:

Differential Revision: D77894081

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157736
Approved by: https://github.com/angelayi
2025-07-08 17:51:46 +00:00
Nikita Shulga
a5c61eb78d [MPS][BE] Delete as_strided_tensorimpl_mps (#157772)
Because it's just copy-n-paste of `as_strided_tensorimpl` with call to `updateTensorBaseShape`, which is not called/used anywhere else.

Fixes https://github.com/pytorch/pytorch/issues/152701
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157772
Approved by: https://github.com/Skylion007
2025-07-08 17:02:36 +00:00
henrylhtsang
bbe681ed51 [cutlass backend][BE][ez] Make matmul layouts be row x column (#156656)
Differential Revision: [D77184232](https://our.internmc.facebook.com/intern/diff/D77184232/)

Motivation:
* This is the case we care the most.
* We are caching the kernels for this row x column layout. So testing on them can potentially make ci run faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156656
Approved by: https://github.com/ColinPeppler
2025-07-08 16:57:33 +00:00
Tianyu Liu
ed911747c2 [dtensor] add support for fused optimizer with parameters across multiple meshes (#157682)
We are seeing more and more use cases where parameters in a model (under the same optimizer group) are put on different meshes. E.g.
- when FSDP and TP are both applied, some parameters are sharded only on the FSDP mesh but not TP mesh (see https://github.com/pytorch/pytorch/pull/153268).
- in [dp2ep Expert Parallel](https://github.com/pytorch/torchtitan/pull/1324), the routed experts are sharded on the (global FSDP \ EP) mesh for smaller FSDP and on the EP mesh for EP, whereas other params are sharded on the global FSDP mesh for FSDP.

This PR is, in some sense, a continuation of https://github.com/pytorch/pytorch/pull/147869 to tackle the problem when fused optimizers are used. In such cases, the [`fused_adam`](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml#L15786) / `fused_adamw` has a scalar tensor arg `state_steps` which gets automatically cast to DTensor on the default [`compute_mesh`](https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/_dispatch.py#L350) (one of the multiple meshes), even though the it could correspond to different meshes.

To avoid hitting the cross-mesh propagation exception in `common_pointwise_strategy` and followup redistribute problems, we manually set the target mesh and placements to be the same as input mesh and placements, so that no redistribute will be triggered. This also helps bypass the situation where [`generate_redistribute_costs`](https://github.com/pytorch/pytorch/pull/157682/files#diff-eea32a36dd2d4e58307bc5229402e48048b2ecaef64a7c085495fba1ee10ac89R597) returns infinite cost due to cross mesh redistribute.

Moreover, this PR has minimal scope (restricted to the `fused_ops`) and doesn't need to modify other files such as `_sharding_prop.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157682
Approved by: https://github.com/wanchaol
2025-07-08 15:58:30 +00:00
Xuan Zhang
86670b39fa [PT2][memory] mutation size correctness (#157562)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157562
Approved by: https://github.com/yf225
2025-07-08 14:02:20 +00:00
rzou
b9afdd9bcc Add flag to fx.passes.split_module to normalize input names (#157733)
This is useful for vLLM, which runs AOTAutograd directly on graphs after
they have been split.

I created a new flag for this instead of reusing
`keep_original_node_name` (please let me know if you think I should reuse this).
The reasoning is:
- The names of the placeholder nodes is different from the targets of
  the placehoder nodes. The targets are the actual input names.
- Backwards compatibility: this API has been out for ~4 years, it
  looks public, and it has extensive public use. For example, this change
  would actually be BC-breaking to vLLM (they rely on the subgraph input
  names being different at the moment).

Test Plan:
- new tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157733
Approved by: https://github.com/ezyang
2025-07-08 13:47:24 +00:00
Aleksei Nikiforov
41e8b826d0 S390x update test marks (#157541)
Update s390x test marks

test_logs_out from test/dynamo/test_logging.py is updated
and no longer fails on s390x.

test_qengine from test/test_torch.py doesn't work on s390x:
no QEngine is available.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157541
Approved by: https://github.com/huydhn
2025-07-08 09:08:33 +00:00
IvanKobzarev
8134684d44 [inductor collectives] sink waits iterative (#157708)
Differential Revision: [D77861763](https://our.internmc.facebook.com/intern/diff/D77861763)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157708
Approved by: https://github.com/wconstab
ghstack dependencies: #157706
2025-07-08 07:17:10 +00:00
Huy Do
2af7c67e48 Mitigate some flaky tests in trunk (#157756)
(not really fix these issues, but we should be able to close them. This also allows CI from the PR to test them)

Fixes https://github.com/pytorch/pytorch/issues/156579
Fixes https://github.com/pytorch/pytorch/issues/156580
Fixes https://github.com/pytorch/pytorch/issues/126867

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157756
Approved by: https://github.com/clee2000
2025-07-08 07:07:11 +00:00
Jithun Nair
38757d94f1 Enable target-determination (TD) for ROCm CI (#156545)
Target determination sorts the tests in a PR CI run based on heuristics about which tests are more relevant to the PR's changes. This can help provide faster CI signal as well as help alleviate capacity concerns as job durations should decrease due to catching failures earlier.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156545
Approved by: https://github.com/jeffdaily, https://github.com/clee2000
2025-07-08 06:27:40 +00:00
Yu, Guangye
1b58e7adab fix storage use_count (#157694)
# Motivation
https://github.com/pytorch/pytorch/pull/155451 decoupled `torch._C._storage_Use_Count` from CUDA and introduced a corresponding unit test:
815545f2dd/test/test_torch.py (L257-L262)
However, this test fails when PyTorch is built with debug assertions enabled. @clee2000 disabled this UT in https://github.com/pytorch/pytorch/pull/156731. The root cause is that `_cdata` is obtained from an `intrusive_ptr`, not a `weak_intrusive_ptr`. As a result, calling `c10::weak_intrusive_ptr::use_count` on it triggers the internal assertion:
815545f2dd/c10/util/intrusive_ptr.h (L912-L917)
For example:
```python
a = torch.randn(10, device=device) # refcount=1, weakcount=1
prev_cf = torch._C._storage_Use_Count(a.untyped_storage()._cdata) # violate the assertation
```
This violates the expected invariant inside `weak_intrusive_ptr::use_count`, which assumes the pointer was originally constructed from a valid `weak_intrusive_ptr`. Actually, `storage_impl` is obtained from an `intrusive_ptr`.
815545f2dd/torch/csrc/Module.cpp (L2105-L2109)

# Solution
Use `c10::intrusive_ptr::use_count` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157694
Approved by: https://github.com/albanD
2025-07-08 05:53:12 +00:00
drisspg
987314aa96 Split batch-num-heads grid dim between y and z (#157745)
for #157018

doesn't totally fix the problem but should help alot

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157745
Approved by: https://github.com/Chillee
2025-07-08 05:17:43 +00:00
Valentine233
f56bfb3030 [CPU] Fix memory access for sbgemm bf16 (#156585)
Fixes #156022.

1. The original dtype conversion overwrites the whole `n_*ldc_` instead of `n_*m_` with stride `ldc_`, causing the potential memory issue.
2. Fix the None value issue in attention backward UT, as the sbgemm bf16 could be used.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156585
Approved by: https://github.com/mingfeima, https://github.com/aditew01, https://github.com/ezyang
2025-07-08 02:36:28 +00:00
Ke Wen
c5589074e6 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-08 01:21:59 +00:00
PyTorch MergeBot
19a01382bc Revert "[SymmMem] find_path does not search /usr/local/lib (#157695)"
This reverts commit 3effe0c293.

Reverted https://github.com/pytorch/pytorch/pull/157695 on behalf of https://github.com/kwen2501 due to Changing it to be landable on 2.8 branch ([comment](https://github.com/pytorch/pytorch/pull/157695#issuecomment-3047020152))
2025-07-08 01:12:01 +00:00
zeshengzong
df72078fe1 [dynamo] Replace unimplemented with unimplemented_v2 in torch/_dynamo/variables/torch.py (#157344)
Fixes part of #147913

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157344
Approved by: https://github.com/williamwen42

Co-authored-by: William Wen <william.wen42@gmail.com>
2025-07-08 00:46:56 +00:00
Aaron Orenstein
edf7bb4f51 Fix unbound local when an error occurs before pool is initialized (#156750)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156750
Approved by: https://github.com/jamesjwu
2025-07-08 00:28:21 +00:00
James Wu
be56a8d7ac Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 23:57:17 +00:00
Ke Wen
3effe0c293 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-07 23:16:45 +00:00
IvanKobzarev
2fde2090d0 [inductor_collectives] Make reorder_collectives_preserve_peak pass grouping nodes (#157706)
Differential Revision: [D77861765](https://our.internmc.facebook.com/intern/diff/D77861765)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157706
Approved by: https://github.com/wconstab
2025-07-07 23:13:58 +00:00
Gabriel Ferns
7e83d50845 Inductor logging + analysis of torch.profile (#149697)
Prereqs:
 - https://github.com/pytorch/pytorch/pull/152708

Features:
1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses.
1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`.
1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`.
1. Extends Triton `torch.profiler` logging to `DebugAutotuner`.
1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side:
```python
Device(NVIDIA H100, 0):
 Kernel Name                              | resnet Kernel Count | resnet FLOPS       | resnet bw gbps        | resnet Dur (ms)    | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS    | newresnet bw gbps     | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth %
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 triton_poi_fused__native_batch_norm_legi | 24                  | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                       | 0.003401572611382541        | 24                     | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                          | 0.003401572611382541
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142                 | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583     | 0.007716441266265022        | 142                    | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583        | 0.007716441266265022
 triton_red_fused__native_batch_norm_legi | 39                  | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                       | 0.004176126863316074        | 39                     | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                          | 0.004176126863316074
 triton_poi_fused__native_batch_norm_legi | 25                  | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                       | 0.009499718184339253        | 25                     | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                          | 0.009499718184339253
 void cutlass::Kernel2<cutlass_80_tensoro | 98                  | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874     | 0.012827592254037562        | 98                     | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874        | 0.012827592254037562
 triton_red_fused__native_batch_norm_legi | 73                  | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                       | 0.009628003963020014        | 73                     | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                          | 0.009628003963020014
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                       | 0.043257347302946926        | 15                     | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                          | 0.043257347302946926
 void cutlass::Kernel2<cutlass_80_tensoro | 186                 | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027     | 0.007961586274361157        | 186                    | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027        | 0.007961586274361157
 triton_poi_fused__native_batch_norm_legi | 33                  | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                       | 0.044550915039384846        | 33                     | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                          | 0.044550915039384846
 triton_red_fused__native_batch_norm_legi | 29                  | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                       | 0.007630624036606301        | 29                     | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                          | 0.007630624036606301
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                       | 0.01752406619162008         | 13                     | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                          | 0.01752406619162008
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 0.41409928846284      | 2.853588235294117  | 0                       | 0.012361172789935523        | 34                     | 0                  | 0.41409928846284      | 2.853588235294117  | 0                          | 0.012361172789935523
 triton_per_fused__native_batch_norm_legi | 34                  | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                       | 0.0034941238826919864       | 34                     | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                          | 0.0034941238826919864
 triton_poi_fused__native_batch_norm_legi | 16                  | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                       | 0.005136672596156592        | 16                     | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                          | 0.005136672596156592
 triton_per_fused__native_batch_norm_legi | 30                  | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                       | 0.007879744244842555        | 30                     | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                          | 0.007879744244842555
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100                 | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531     | 0.005819245035648175        | 100                    | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531        | 0.005819245035648175
 triton_poi_fused__native_batch_norm_legi | 8                   | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                       | 0.029415213809625928        | 8                      | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                          | 0.029415213809625928
 void cublasLt::splitKreduce_kernel<32, 1 | 56                  | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628     | 0.024806865808245714        | 56                     | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628        | 0.024806865808245714
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                       | 0.02968359094286896         | 23                     | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                          | 0.02968359094286896
 triton_per_fused__native_batch_norm_legi | 10                  | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                       | 0.00545313748934644         | 10                     | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                          | 0.00545313748934644
 triton_poi_fused__native_batch_norm_legi | 10                  | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                       | 0.009459622642884923        | 10                     | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                          | 0.009459622642884923
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                       | 0.03421974596124114         | 34                     | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                          | 0.03421974596124114
 void cask_plugin_cudnn::xmma_cudnn::init | 44                  | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194     | 0.06167532194133924         | 44                     | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194        | 0.06167532194133924
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95                  | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802     | 0.014014750913273854        | 95                     | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802        | 0.014014750913273854
 triton_per_fused__native_batch_norm_legi | 41                  | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                       | 0.002037513395819492        | 41                     | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                          | 0.002037513395819492
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                       | 0.0026292999141582997       | 23                     | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                          | 0.0026292999141582997
 triton_per_fused__native_batch_norm_legi | 40                  | 0                  | 0.18179321034952417   | 4.556825           | 0                       | 0.005426662995508183        | 40                     | 0                  | 0.18179321034952417   | 4.556825           | 0                          | 0.005426662995508183
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                       | 0.017574373598370836        | 15                     | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                          | 0.017574373598370836
 void cutlass::Kernel2<cutlass_80_tensoro | 38                  | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546      | 0.007659474756834           | 38                     | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546         | 0.007659474756834
 triton_poi_fused__native_batch_norm_legi | 21                  | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                       | 0.017441376040091088        | 21                     | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                          | 0.017441376040091088
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                       | 0.0034356313950705724       | 16                     | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                          | 0.0034356313950705724
 triton_poi_fused__native_batch_norm_legi | 14                  | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                       | 0.00508857313505646         | 14                     | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                          | 0.00508857313505646
 triton_poi_fused__native_batch_norm_legi | 58                  | 0                  | 2.307520779930795     | 8.190706896551722  | 0                       | 0.06888121731136704         | 58                     | 0                  | 2.307520779930795     | 8.190706896551722  | 0                          | 0.06888121731136704
 triton_per_fused__native_batch_norm_legi | 29                  | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                       | 0.001111738775280038        | 29                     | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                          | 0.001111738775280038
 triton_poi_fused__native_batch_norm_legi | 20                  | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                       | 0.0014154327747549007       | 20                     | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                          | 0.0014154327747549007
 triton_per_fused__native_batch_norm_legi | 25                  | 0                  | 0.13357016893727824   | 3.37536            | 0                       | 0.003987169222008305        | 25                     | 0                  | 0.13357016893727824   | 3.37536            | 0                          | 0.003987169222008305
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                       | 0.009223469457612694        | 13                     | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                          | 0.009223469457612694
 triton_poi_fused__native_batch_norm_legi | 17                  | 0                  | 0.3129385387909844    | 2.673              | 0                       | 0.009341448919133863        | 17                     | 0                  | 0.3129385387909844    | 2.673              | 0                          | 0.009341448919133863
 triton_per_fused__native_batch_norm_legi | 19                  | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                       | 0.0066136363060691275       | 19                     | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                          | 0.0066136363060691275
 std::enable_if<!(false), void>::type int | 23                  | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447   | 0.030203868944223014        | 23                     | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447      | 0.030203868944223014
 triton_poi_fused_add_copy__38            | 56                  | 0                  | 0                     | 2.132482142857143  | 0                       | 0                           | 56                     | 0                  | 0                     | 2.132482142857143  | 0                          | 0
 triton_poi_fused_convolution_0           | 18                  | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                       | 0.012972719640279667        | 18                     | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                          | 0.012972719640279667
 triton_poi_fused_convolution_1           | 17                  | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                       | 0.0008601884319153051       | 17                     | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                          | 0.0008601884319153051
 void convolve_common_engine_float_NHWC<f | 44                  | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169     | 0.0007382250748795709       | 44                     | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169        | 0.0007382250748795709
 triton_per_fused__native_batch_norm_legi | 12                  | 0                  | 0.6809930918986744    | 4.82675            | 0                       | 0.020328151996975356        | 12                     | 0                  | 0.6809930918986744    | 4.82675            | 0                          | 0.020328151996975356
 triton_per_fused__native_batch_norm_legi | 14                  | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                       | 0.0008606061486377935       | 14                     | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                          | 0.0008606061486377935
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.0014658988233201874 | 2.098              | 0                       | 4.375817383045335e-05       | 16                     | 0                  | 0.0014658988233201874 | 2.098              | 0                          | 4.375817383045335e-05
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                       | 0.02963073785159611         | 13                     | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                          | 0.02963073785159611
 triton_poi_fused__native_batch_norm_legi | 9                   | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                       | 0.03883228983781048         | 9                      | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                          | 0.03883228983781048
 void at::native::(anonymous namespace):: | 98                  | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                       | 0.0027386076458833994       | 98                     | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                          | 0.0027386076458833994
 void at::native::vectorized_elementwise_ | 7                   | 0                  | 0                     | 1.7278571428571428 | 0                       | 0                           | 7                      | 0                  | 0                     | 1.7278571428571428 | 0                          | 0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-07-07 22:13:34 +00:00
Ankita George
5c79a55e7e [oss] Add version to metadata (#155343)
Summary: We want to add versioning to DCP to the metadata so that whenever planner logic changes, we can use the version on save to determine how to load the data

Test Plan:
added a test

Rollback Plan:

Differential Revision: D76135887

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155343
Approved by: https://github.com/teja-rao
2025-07-07 20:57:30 +00:00
zpcore
c2510fcd86 Fix index_put propagate strategy arg unpack error (#157671)
Fix `index_put` propagate strategy didn't consider optional arg `accumulate`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157671
Approved by: https://github.com/fmassa, https://github.com/wconstab
2025-07-07 20:18:18 +00:00
Kurt Mohler
510c398a4f Add max_pool3d backward pass for MPS (#157498)
Note on backward precision over fp16:

A float16 number has 10 bits of mantissa, 5 bits of exponent, and 1 bit for the sign. If the sign bit is positive, then with a mantissa $m$ and exponent $e$ represented in base 10, the number that the float16 format represents is $(1 + m / 1024)  \exp2(e)$. ([source](https://en.wikipedia.org/wiki/Half-precision_floating-point_format))

Consider adding two numbers $a$ and $b$ which have arbitrary mantissas, and say their exponents are $e_a = 1$ (so $2 \le a \lt 4$) and $e_b=-3$ (so $0.175 \le b \lt 0.25$). Assume that the result has the same exponent as $a$. Since the exponents differ by 4, we'll effectively need to truncate the 4 rightmost bits of $b$'s mantissa, which would introduce a maximum error on the order of $(2^4 / 1024)  \exp2(-3) \approx 0.002$.

The error is nearly the same if $e_b = -2$ (so $0.25 \le b \lt 0.5$), where the 3 rightmost bits are truncated, giving a maximum error on the order of $(2^3 / 1024)  \exp2(-2) \approx 0.002$. Same for $e_b=-1$.

So if we're adding up nine different numbers that all have exponents -3, -2, or -1, and they sum to a number with exponent 1, then we would expect a maximum error of several times greater than 0.002. In my comments above, summing those particular nine numbers in different ways gave results that ranged between 3.1816 and 3.1758, a difference of $0.0058 \approx 2.9  * 0.002$.

That's within the acceptable bounds, and we can safely just increase the error tolerance used in test_output_grad_match for the case of max_pool3d_backward with float16.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157498
Approved by: https://github.com/malfet
2025-07-07 19:46:44 +00:00
yifanmao
9e5f4a844c [FSDP2] Fix issue with set_reduce_scatter_divide_factor errors and MixedPrecisionPolicy (#155964)
fix https://github.com/pytorch/pytorch/issues/155223

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155964
Approved by: https://github.com/weifengpy
2025-07-07 17:09:29 +00:00
PyTorch MergeBot
ae1094b72b Revert "[WIP] Automatically load and save dynamo entries via caching_precompile (#155913)"
This reverts commit e466dab164.

Reverted https://github.com/pytorch/pytorch/pull/155913 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail a test in trunk ([comment](https://github.com/pytorch/pytorch/pull/155913#issuecomment-3045914878))
2025-07-07 16:53:35 +00:00
Guilherme Leobas
eda0a9cc90 [list] Add list.__delitem__ (#156339)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156339
Approved by: https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242, #156270, #156271
2025-07-07 14:51:32 +00:00
Guilherme Leobas
d74ccf4ffe [list] Add list.__mul__ and list.__imul__ (#156271)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156271
Approved by: https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242, #156270
2025-07-07 14:51:32 +00:00
Guilherme Leobas
689fba032d Implement list.__add__ and list.__iadd__ (#156270)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156270
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242
2025-07-07 14:51:25 +00:00
Guilherme Leobas
c1d69d5dd5 [list] Implement list.remove (#156242)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156242
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #153969, #156148
2025-07-07 14:51:17 +00:00
Guilherme Leobas
e49acfc5c5 [list] Raise exception in invalid list method call (#156148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156148
Approved by: https://github.com/zou3519
ghstack dependencies: #153969
2025-07-07 14:51:10 +00:00
PyTorch UpdateBot
40e39ae21f Update slow tests (#157696)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157696
Approved by: https://github.com/pytorchbot
2025-07-07 12:09:06 +00:00
James Wu
e466dab164 [WIP] Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 11:56:30 +00:00