Commit Graph

22 Commits

Author SHA1 Message Date
Pian Pawakapan
946e202c07 [export] Restore user input names to unlifted graph modules (#124765)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/122842

Currently, calling ep.module() on an ExportedProgram leads to a GraphModule with a default forward signature (e.g. arg_0, arg_1, ...). This leads to original placeholder names disappearing for retracing/re-exporting.

Fixing this issue by creating a forward_arg_names field (will take renaming suggestions for this), that stores the positional & keyword arg names that are used. These names aren't present in the call_spec currently stored, and requires a major version bump for the ExportedProgram schema.

Test Plan: Tests exist for export, but names are now changed from generic (e.g. arg_0, arg_1) to follow user inputs (e.g. x, y)

Differential Revision: D56484994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124765
Approved by: https://github.com/zhxchen17
2024-04-29 20:58:17 +00:00
angelayi
e8836759d0 [export] Add effect token to export (#121424)
Following the creation of effect tokens (https://github.com/pytorch/pytorch/pull/120296), we want to now add support for these tokens in export because the calling/returning convention has changed. The inputs are now `(tokens, params, buffers, constants, user_inputs)` and the outputs are `(tokens, buffer_mutations, user_mutations, user_outputs)`. The graph looks something like:
```
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %attr : [num_users=2] = placeholder[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %with_effects : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%arg0_1, _TorchScriptTesting.takes_foo.default, %attr, %arg1_1), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 0), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 1), kwargs = {})
    %with_effects_1 : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%getitem, _TorchScriptTesting.takes_foo.default, %attr, %getitem_1), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 0), kwargs = {})
    %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %getitem_3), kwargs = {})
    return (getitem_2, add)
```

During unlifting, we will first remove the tokens and with_effect calls using the `remove_effect_tokens` pass. (cc @SherlockNoMad on the pass to remove tokens). This is so that this won't change the calling conventions when retracing. The graph after unlifting looks something like:
```
graph():
    %attr_1 : [num_users=2] = get_attr[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %takes_foo_default_1 : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %arg1_1), kwargs = {})
    %takes_foo_default : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %takes_foo_default_1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %takes_foo_default), kwargs = {})
    return (add,)
```

Serialization support will be added in a followup.
Note: tokens only affect custom ops that take in ScriptObjects, not ScriptObject methods yet.

Differential Revision: [D54639390](https://our.internmc.facebook.com/intern/diff/D54639390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121424
Approved by: https://github.com/tugsbayasgalan
2024-03-09 02:43:26 +00:00
Zhenghao Zhao
af93849a3a [pt2 export] small fix on non_persistent buffer unlift (#120715)
Summary: Change to get_buffer from the input plain_graph_module instead of the new stateful_gm when restoring non_persistent buffers, since the stateful_gm doesn't contain the buffer yet.

Test Plan:
Added test case.
`buck test caffe2/test:test_export -- test_unlift_nonpersistent_buffer`

Differential Revision: D54216772

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120715
Approved by: https://github.com/zhxchen17
2024-03-01 20:20:00 +00:00
Michael Suo
bf4e171539 [export] support non-persistent buffers (#118969)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1817

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

As a side effect, this diff tightened up quite a few sloppy  behaviors around state dict handling:
- Tensor attributes were getting promoted to be buffers—bad!
- Tracing through a module not in the children of the root module would add its parameters/buffers to the state dict—bad!

This behavior is unlikely to show up in user code since the model would be totally broken, but did show up in a bunch of tests.

#buildmore

Test Plan:
unit tests
sandcastle

Differential Revision: D53340041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118969
Approved by: https://github.com/guangy10, https://github.com/huydhn, https://github.com/titaiwangms
2024-02-02 19:16:08 +00:00
PyTorch MergeBot
221747507d Revert "[export] support non-persistent buffers (#118612) (#118722)"
This reverts commit a43c28368c.

Reverted https://github.com/pytorch/pytorch/pull/118722 on behalf of https://github.com/atalman due to broke linux-jammy-py3-clang12-executorch ([comment](https://github.com/pytorch/pytorch/pull/118722#issuecomment-1921484565))
2024-02-01 14:39:29 +00:00
Angela Yi
7e0ea0d5df [export] Only deepcopy graph in unlift (#118821)
Summary: We only need to deepcopy the graph because we're modifying the graph by unlifting its parameter/buffer inputs. We don't need to deepcopy the graph module state/contents. This causes an error when the graph module contains an ExecuTorch LoweredModule which stores tensors.

Test Plan: Fixes the following diff

Differential Revision: D53290077

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118821
Approved by: https://github.com/tugsbayasgalan
2024-02-01 09:00:22 +00:00
Michael Suo
a43c28368c [export] support non-persistent buffers (#118612) (#118722)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1769

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

Test Plan: added a unit test

Differential Revision: D53253905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118722
Approved by: https://github.com/SherlockNoMad, https://github.com/angelayi
2024-02-01 00:36:09 +00:00
suo
d0627cc2af [export] do not rewrite state dict when unlifting (#118611)
This is Very Bad; changing state dict keys violates one of the key contracts we have, which is "do not mess with the state dict".

Change unlift to use a similar `_assign_attr` approach that fx.GraphModule and unflatten do.

Also took the opportunity to improve the interface of `_assign_attr` to be more general.

Differential Revision: [D53139277](https://our.internmc.facebook.com/intern/diff/D53139277/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118611
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608, #118609, #118610
2024-01-30 19:14:19 +00:00
suo
be90ab7efd [export] do not unlift cond/map submodules (#118610)
I don't think we should be unlifting HOO submodules.

What is the constract of unlifting? It is: restore the original calling convention of the module, undoing the transformation in which we lift parameters, buffers, and constants to inputs in the graph.

Unlifting does *not* make any guarantees about what's going on inside the module. It's still a flat module. So why should we lift the cond/map submodules? It doesn't have anything to do with the contract stated above; it's some internal stuff that doesn't affect how the module will be called.

Further, this code as written modifies the state dict; adding a new buffer that is actually duplicate of a previous buffer. Modifying the state dict from the original eager module is never correct.

Differential Revision: [D53160713](https://our.internmc.facebook.com/intern/diff/D53160713/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118610
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608, #118609
2024-01-30 19:14:18 +00:00
suo
4ee8aa6028 [export] adopt KeyPath API in nonstrict mode (#118609)
This PR rewrites two paths to use the newly-added keypaths API in pytree:
First: we were hand-rolling a tree_map during fakification because we wanted to track sources. This PR uses keypaths instead, which can do the same thing without needing custom code.

Second: our constraint error formatting was referencing placeholder names in error messages. These placeholder names are not otherwise user-visible, so they are super confusing to users (e.g. "which input does arg1_3 correspond to?"). This diff uses the `keystr` API to format the error message.

This necessitated some small refactors—generating the keystr is expensive so doing it in an f-string was very bad.

It can also be further improved—we can inspect the signature so that instead of `*args[0]` we can give people the actual argument name, which would be the ideal UX. But leaving that for later.

Differential Revision: [D53139358](https://our.internmc.facebook.com/intern/diff/D53139358/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118609
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608
2024-01-30 19:14:11 +00:00
suo
ca090b2c77 [export] do not use tree_flatten_spec (#118608)
tree_flatten_spec is bad; it isn't synced up with `register_pytree_node` so it will not handle arbitrary custom pytrees. It's also not really maintained.

We only use it for two purposes:
- To retain kwarg ordering stability, so that if the user passes in kwargs in a different order things will still work.
- To do "structural" checks that ignore types.

In both cases, tree_flatten_spec is probably *not* the ideal way to implement the desired behavior.

## kwargs ordering
- tree_flatten_spec overwrites the behavior of ALL dictionaries, not just kwargs. This is not correct, dictionary ordering is meaningful in Python, and it's pretty trivial to write a program that relies on dict ordering.
- For kwargs, we do sort of expect that the order in which arguments are passed shouldn't matter. BUT there is one exception: `**kwargs`. In fact, [PEP 468](https://peps.python.org/pep-0468/) was introduced specifically to clarify that ordering does matter when the function being called uses `**kwargs`.

In this diff I introduce a utility function that *only* reorders kwargs. This gets us most of the way to correct—dicts are no longer reordered, but kwargs can be passed in any order.

A "fully correct" solution would need fix the corner case from PEP468. We could detect whether the top-level fn being traced uses `**kwargs` (via `inspect`), then serialize a flag for it. In ExportedProgram, we would check that flag and only re-order if `**kwargs` was unused; otherwise error if the key order doesn't match. This is a super corner case though, so I'll file it as a followup task.

## structural equivalence checking

This is another use case, where again `tree_flatten_spec` is too broad. Generally we want to treat a precise two types as the same, not override the behavior of comparison generally. So I introduce an `is_equivalent` util for this purpose.

Differential Revision: [D53168420](https://our.internmc.facebook.com/intern/diff/D53168420/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118608
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607
2024-01-30 19:14:04 +00:00
Angela Yi
413a434846 [export] Convert all export tests to .module() (#118425)
Test Plan: CI

Differential Revision: D53075379

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118425
Approved by: https://github.com/suo
2024-01-29 23:06:54 +00:00
Angela Yi
5c56822be2 [export] Various fixes to .module() (#118272)
Summary: While turning on .module() for all the export tests, I uncovered some bugs with .module() and while fixing them I ended up rewriting some of the code... Some of the bugs were:

* bad kwargs support on the unlifted module
* no support for user input mutations
* (at the commit hash i was working off of) no support for custom objects
* there were no tests on unlifting weights from cond/map submodules

Test Plan: CI

Differential Revision: D53075380

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118272
Approved by: https://github.com/suo
2024-01-26 21:05:07 +00:00
Angela Yi
a93940b5db [export] Allow constant outputs + None input/outputs (#117894)
Added support for constant outputs. We will just embed the constant directly into the output, like `return (x, 1)`.
Also adds support for None input/outputs. For None inputs we address it the same way we do to constants, which is that a placeholder with no users will be inserted into the graph, and the None will be embedded into whatever operator is using the None. For None outputs, we will also address the same way we do constants, which is that we embed it into the output, like `return (x, None)`.

Differential Revision: D52881070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117894
Approved by: https://github.com/zhxchen17
2024-01-25 23:37:34 +00:00
suo
d84173c025 [export] fix unlifting of custom class constants (#117979)
we didn't have a test covering this case, add one.

Aside: we should invest in actually unit testing the lifting/unlifting passes, both separately and also against each other. I have a diff cooking for that.

Differential Revision: [D52962180](https://our.internmc.facebook.com/intern/diff/D52962180/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117979
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #115222, #117978
2024-01-23 05:51:00 +00:00
Yidi Wu
2bc7da1ab7 [HigherOrderOp] change signature of map_impl (#117161)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1580

This PR changes the schema of map_impl from map_impl(f, num_mapped, *operands) to map_impl(f, mapped_args: Tuple, moperands: Tuple). This is to prepare for turning on dynamo for eager mode map, where we want to get rid of the num_mapped scalar.

Test Plan: Existing tests.

Differential Revision: D52495413

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117161
Approved by: https://github.com/angelayi, https://github.com/tugsbayasgalan
2024-01-13 02:50:46 +00:00
Angela Yi
6413511713 [export][refactor][4/n] Make equality_constraints optional (#116233)
Summary: needed to remove equality_contraints eventually :P

Test Plan: CI

Differential Revision: D52351709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116233
Approved by: https://github.com/tugsbayasgalan
2024-01-05 00:50:52 +00:00
Xuehai Pan
199e07f108 [pytree][BE] update treespec num_children access (#116370)
Change `len(treespec.children_spes) -> treespec.num_children`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116370
Approved by: https://github.com/Skylion007
2023-12-24 20:54:32 +00:00
Bradley Davis
ad3c0b2c00 [torch.export] fixes for unlifting lifted tensor constants (#116266)
Summary: lifted tensor constants were not being treated the same way as named buffers when unlifting, i.e. getting name correction to convert "." in FQNS to "_" for proper names. Additionally, future torchbind object support will allow objects to be registered, so only register_buffer for lifted constants if the value is a tensor.

Differential Revision: D52367846

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116266
Approved by: https://github.com/angelayi
2023-12-22 04:46:25 +00:00
angelayi
b6a4866330 [export][reland][refactor][3/n] Move unlift to separate file (#115558)
Reland of https://github.com/pytorch/pytorch/pull/114787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115558
Approved by: https://github.com/zhxchen17, https://github.com/atalman
ghstack dependencies: #115556, #115557
2023-12-12 05:37:07 +00:00
atalman
749f0c90e1 Revert "[export][refactor][3/n] Move unlift to separate file (#114787)" (#115457)
Github First Oncall: This reverts commit 967863d91d.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115457
Approved by: https://github.com/osalpekar
2023-12-08 22:33:28 +00:00
angelayi
967863d91d [export][refactor][3/n] Move unlift to separate file (#114787)
Differential Revision: [D51823960](https://our.internmc.facebook.com/intern/diff/D51823960)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114787
Approved by: https://github.com/ydwu4
ghstack dependencies: #114764, #114768
2023-12-06 16:46:47 +00:00