Commit Graph

805 Commits

Author SHA1 Message Date
PyTorch MergeBot
ccbac091d2 Revert "Add write_record_metadata to PyTorchFileWriter (#125184)"
This reverts commit dd92637f44.

Reverted https://github.com/pytorch/pytorch/pull/125184 on behalf of https://github.com/izaitsevfb due to breaks internal builds, see D56962076 ([comment](https://github.com/pytorch/pytorch/pull/125184#issuecomment-2094976897))
2024-05-05 22:40:00 +00:00
Sergii Dymchenko
59abd1dccb Fix lint after PR 122611 (#125512)
Fix lint after https://github.com/pytorch/pytorch/pull/122611
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125512
Approved by: https://github.com/clee2000
2024-05-03 22:58:20 +00:00
Iosif Spulber
4abcf36dde Make c10::Error empty backtrace as an optional argument (#122611)
Summary: Split from the main diff in the stack.

Test Plan: Build validation should be enough.

Reviewed By: ezyang

Differential Revision: D55313410

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122611
Approved by: https://github.com/ezyang
2024-05-03 22:50:00 +00:00
Mikayla Gawarecki
dd92637f44 Add write_record_metadata to PyTorchFileWriter (#125184)
Add `PyTorchFileWriter.write_record_metadata(record_name, num_bytes)` that
- writes the zipfile header/end of central directory metadata for an entry*
- reserves `num_bytes` in the zipfile for the payload.

*Since the payload is not provided, the CRC32 computation is skipped and 0s are written in the corresponding entry of the zipfile header

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125184
Approved by: https://github.com/albanD
2024-05-03 07:29:52 +00:00
PyTorch MergeBot
a46c27d961 Revert "Verify types in custom op schemas (#124520)"
This reverts commit 141888765b.

Reverted https://github.com/pytorch/pytorch/pull/124520 on behalf of https://github.com/jeanschmidt due to Breaking internal tests check D56588015 for more details ([comment](https://github.com/pytorch/pytorch/pull/124520#issuecomment-2078917978))
2024-04-26 08:42:11 +00:00
David Berard
b3cf36cb7c Implement deepcopy / clone for SymNode, NestedIntSymNode (#121361)
**Motivation**: There's a Meta-internal use case that deepcopies a bunch of metadata, which includes shapes. When we try to use NestedTensor with this tool, it errors out when we try to deepcopy the metadata, because SymNodes cannot be deepcopied. The change here is to add an implementation of `__deepcopy__`.

**Implementation**:
1. `__deepcopy__` on SymNode calls clone()
2. Implement `clone()` in NestedIntSymNode, which previously didn't have this implemented

**Potential Issues**:
Right now, this works.

But, regarding (2): Eventually we'll have some mapping between the NestedSymIntNode and its corresponding offsets/lengths tensor (cc @soulitzer who is working on this). How should this work with `__deepcopy__`? Should the offsets/lengths tensor also be cloned, or should the new symint reference the same offsets as the old symint?

On one hand, we already have this issue with NestedIntSymNodeImpl::mul(): mul() creates a new NestedIntSymNodeImpl. On the other hand, `__deepcopy__` might imply different semantics.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121361
Approved by: https://github.com/soulitzer
2024-04-26 04:18:29 +00:00
rzou
141888765b Verify types in custom op schemas (#124520)
Before this PR, we didn't check that types in a schema were valid. This
is because TorchScript treats unknown types as type variables.

This PR checks types in a schema for the TORCH_LIBRARY APIs. To do this,
we add an `allow_typevars` flag to parseSchema so that TorchScript can
use allow_typevars=True. We also add some error messages for common
mistakes (e.g. using int64_t or double in schema).

Test Plan:
- new tests

Differential Revision: [D56432690](https://our.internmc.facebook.com/intern/diff/D56432690)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124520
Approved by: https://github.com/albanD
2024-04-25 01:56:58 +00:00
PyTorch MergeBot
92295fbacd Revert "Verify types in custom op schemas (#124520)"
This reverts commit 5b98d43488.

Reverted https://github.com/pytorch/pytorch/pull/124520 on behalf of https://github.com/zou3519 due to broke static runtime tests ([comment](https://github.com/pytorch/pytorch/pull/124520#issuecomment-2075111935))
2024-04-24 14:41:26 +00:00
Edward Z. Yang
b04dca1502 Add pending_fresh_unbacked_symbols, populate unbacked_bindings for Dynamo (#124290)
The important comment:

```
        # Whenever we allocate a fresh unbacked Symbol, we add it to this
        # pending list.  Unbacked symbol allocation can occur at unpredictable
        # points during meta tensor propagation, but at some point, the we
        # have to know what the binding site for an unbacked symbol is, and
        # this is computed when we actually place the node in the graph.  The
        # important thing is that we always actually handle every unaccounted
        # for unbacked symbol, so this list helps us keep track of them and
        # then make sure they are all accounted for.
        #
        # We could potentially give rise to errors earlier by lexically
        # scoping when we do propagation, and only allowing unbacked symbols
        # to be allocated at this point in time.  However this is inconvenient
        # to do in Dynamo, because fake tensor propagation is far from when we
        # analyze binding sites (set_example_value), so we do it in a more
        # mutatey way.
        #
        # NB: fresh unbacked symbols NEVER get substitutions applied to them,
        # they are binding sites!
```

The compute_unbacked_bindings is the other half of the equation: the thing that actually consumes the pending_fresh_unbacked_symbols and does something with them. Important comment:

```
    After having run fake tensor propagation and producing example_value
    result, traverse example_value looking for freshly bound unbacked
    symbols and record their paths for later.  It is an error if
    we have allocated an unbacked SymInt but it cannot be found in
    example_value.  (NB: this means if you have a multi-output
    function, you must call this on the tuple of tensor output, you
    cannot wait!)
```

For example, if I return a tensor with size `[u0, u1]`, and u1 is a fresh unbacked SymInt, then I'll have `{u1: KeyPath(".size(1)")}`, telling me I can get u1 by running `size(1)` on the result of this node. u0 is not fresh (it probably flowed in as an argument), so I don't generate a binding for it.

I eventually intend to propagate this information all the way to Inductor lowering, where extra metadata about unbacked symbol binding will be canonically used for codegen, instead of trying to infer it from defs/uses.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124290
Approved by: https://github.com/lezcano
2024-04-24 09:11:34 +00:00
rzou
5b98d43488 Verify types in custom op schemas (#124520)
Before this PR, we didn't check that types in a schema were valid. This
is because TorchScript treats unknown types as type variables.

This PR checks types in a schema for the TORCH_LIBRARY APIs. To do this,
we add an `allow_typevars` flag to parseSchema so that TorchScript can
use allow_typevars=True. We also add some error messages for common
mistakes (e.g. using int64_t or double in schema).

Test Plan:
- new tests

Differential Revision: [D56432690](https://our.internmc.facebook.com/intern/diff/D56432690)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124520
Approved by: https://github.com/albanD
2024-04-23 14:18:35 +00:00
ydwu4
e62169a8fa Support torchbind op dispatch in python (#123367)
We override the `__call__` method and register fake, functional, proxy default dispatch mode implementation in its python_key_mode_table.

The idea is:
1. when inputs contains FakeScriptObject,  we dispatch it through _get_dispatch mechanism. We implement dispatch mode keys automatically in the operator's constructor.
2. when inputs are not fakified, we dispatch through the original c++ dispatcher.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123367
Approved by: https://github.com/zou3519
2024-04-19 17:17:27 +00:00
Tobias Ringwald
6ba85cfc2a Fixed memory leak in Python dispatcher w.r.t. THPDevice. (#122439)
Fixes the memory leak reported in #122417.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122439
Approved by: https://github.com/soulitzer
2024-03-22 06:44:12 +00:00
FFFrog
485f8ebc07 add __repr__ function to FunctionSchema for Python (#121484)
Fixes #118566

Unlike **OpOverload** or **OpOverloadPacket**, there is a lot of complex information in the schema, so for me keeping it as is is probably a good choice, but in theory the **\_\_repr__** function should show the class name as well as some other key information.

If you have any choices, please show me, thank you.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121484
Approved by: https://github.com/Skylion007
2024-03-11 15:16:50 +00:00
Sheng Fu
31bfa59970 Capture primitive data type arguments for profiling python_function (#120949)
RECORD_FUNCTION in python_function only captures argument that is a Tensor. However, it is very common for user to use non tensor arguments in custom ops, for example, sequence length in GPT attention custom op. My previous PR tries to capture all non-tensor arguments, it turned out in some cases, it is very expensive.

This PR is to support primitive (or its container) arguments in RECORD_FUNCTION.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120949
Approved by: https://github.com/soulitzer
2024-03-06 05:09:22 +00:00
albanD
8cb4855d1e Release the GIL in serialization when it is safe to do so (#120818)
In particular this ensures we release the GIL when serializing:
- PyBytes objects (this is how we get the pickle object)
- Storage objects

Other string-like objects keep the gil which is fine because we only use this for very small strings today (for endianess) and so releasing the GIL is not important there
Co-authored-by: Mikayla Gawarecki <mikaylagawarecki@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120818
Approved by: https://github.com/colesbury
2024-03-01 22:37:26 +00:00
soulitzer
27c5bbe5cb Add is_nested_int() (#119975)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119975
Approved by: https://github.com/jbschlosser
ghstack dependencies: #119661, #119974
2024-02-21 21:10:02 +00:00
soulitzer
312ce35c1f Rename singleton int to nested int (#119661)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119661
Approved by: https://github.com/ezyang
2024-02-16 19:21:17 +00:00
cyy
5f9b432494 [2/N] Replace std::tie with structural binding (#119879)
This PR follows #119774, Python generated code was changed to use structural binding.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119879
Approved by: https://github.com/albanD
2024-02-15 02:56:34 +00:00
suo
82248f0b1c [export] improve FakeTensor serialization (#119531)
Recently we made it possible to serialize ExportedPrograms with fake parameters/buffers/etc.

The serialization regime was kind of whacky; basically we serialized a stub and reassembled the FakeTensor using metadata that we had stashed elsewhere in the Graph state.

This was bad for a few reasons:
- Storing the metadata separately from the actual serialized object caused situations where you could have one but not the other. An example case is if you had a FakeTensor contained inside a TorchBind object—there was no obviously place to store the metadata for this. This actually happens—TensorQueue in fbgemm does this.
- It created an annoying cycle: we had to deserialize the Graph's tensor metadata in order to deserialize (potentially faked) constants, but we need constants in order to deserialize the Graph.

This fixes all that. The basic idea is to patch the reducer function for FakeTensor at serialization time, and serialize a copy of the FakeTensor metadata. We already are policing BC for the TensorMeta schema struct so it's not a net increase in the BC surface.

As a bonus, I fixed a weird bug with torchbind tracing where we were accidentally reinterpreting a torch.ScriptObject as a torch.ScriptModule (which was the root cause of some weird behavior @bahuang was seeing last week).

Differential Revision: [D53601251](https://our.internmc.facebook.com/intern/diff/D53601251/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119531
Approved by: https://github.com/zhxchen17
2024-02-12 19:28:08 +00:00
Simon Fan
8e14e1d514 Fix gradient refcounts in pybind and compiled autograd (#118817)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118817
Approved by: https://github.com/jansel
2024-02-07 10:25:42 +00:00
Edward Z. Yang
3f0fd36835 Introduce size oblivious guards (#118579)
Fixes https://github.com/pytorch/pytorch/issues/117361

The implementation here slightly diverges from what was proposed in the issue, so I will recap what this PR is doing here. Today, when doing computations involving size-like unbacked SymInts, we assume for all operations that the compile time range of the integer is `[2, inf]`, even though at runtime we also accept zero and one.

This PR removes the carte blanche assumption, and instead does the analysis in a much more limited and controlled fashion: only for guards which we have designated as "size oblivious" are we willing to do the analysis under the assumption that the range of all size-like unbacked SymInts is `[2, inf]`; otherwise, we will faithfully only do analysis with `[0, inf]` (or whatever the user provided) bounds.

The infra pieces of this PR are:

* Remove runtime_var_to_range from torch/fx/experimental/symbolic_shapes.py; modify `_constrain_range_for_size` to refine the range without clamping min to 2, and instead add the symbol to a `size_like` set in the ShapeEnv
* When evaluating an expression, if the expression is requested to be evaluated in a `size_oblivious` way, we attempt to statically compute the value of the expression with the assumption that all symbols in `size_like` are updated to assume that they are `>= 2`.
* Add Python and C++ APIs for guarding on a SymBool in a size-oblivious way. In C++, I also need to add some helpers for performing symbolic comparisons, since the stock comparisons immediately specialize in the "normal" way.

The rest of the changes of the PR are marking various spots in PyTorch framework code as size oblivious, based on what our current test suite exercises.

As you review the places where we have marked things as size oblivious, it may become clear why I ended up not opting for the "designate a branch as the default branch when it's not statically obvious which way to go": for some of the conditions, this answer is rather non-obvious. I think potentially there is another refinement on top of this PR, which is something like "I don't care if you can't figure it out with ValueRange analysis, go down this path anyway if there are unbacked sizes involved." But even if we add this API, I think we are obligated to attempt the ValueRange analysis first, since it can lead to better outcomes sometimes (e.g., we are able to figure out that something is contiguous no matter what the unbacked size is.)

When is it permissible to mark something as size oblivious? Heuristically, it is OK anywhere in framework code if it gets you past a guard on unbacked SymInt problem. It is somewhat difficult to provide a true semantic answer, however. In particular, these annotations don't have any observational equivalence guarantee; for example, if I have `torch.empty(u0, 1).squeeze()`, we will always produce a `[u0]` size tensor, even though if `u0 == 1` PyTorch will actually produce a `[]` size tensor. The argument that I gave to Lezcano is that we are in fact defining an alternate semantics for a "special" size = 0, 1, for which we have these alternate eager mode semantics. In particular, suppose that we have a constant `special1` which semantically denotes 1, but triggers alternate handling rules. We would define `torch.empty(special1, 1).squeeze()` to always produce a `[special1]` size tensor, making its semantics coincide with unbacked SymInt semantics. In this model, the decision to designate guards as size oblivious is simply a user API question: you put them where ever you need some handling for special1! As we conservatively error out whenever it is not obvious what `special1` semantics should be, it is always valid to expand these semantics to cover more cases (although you can always choose the wrong semantics!)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118579
Approved by: https://github.com/eellison, https://github.com/lezcano
2024-02-06 19:45:32 +00:00
Michael Suo
eaa45f47f8 [sigmoid] fix for torchbind serialization (#118791)
Summary:
There is an annoying inconsistency in how we pickle custom objs.
`torch.save` will invoke regular pickle, for which we have bound `__setstate__`/`__getstate__` methods on `torch.ScriptObject`: https://fburl.com/code/4howyl4u.

This serializes in a different format than TorchScript does, which uses the TS C++ pickler.

The issue we were facing was using the Python pickler to save, and the C++ pickler to load. If we use the C++ pickler to both save and load (plus some plumbing to get type/object resolution to work correctly), then things should work.

Test Plan:
ran SherlockNoMad's repro
```
buck2 run 'fbcode//mode/dev-nosan' scripts/bahuang:export_torchbind -- --logging DBG
```

Got to a new error, which has to do with how we're initializing the graph, but will leave that for future diffs.

Reviewed By: SherlockNoMad

Differential Revision: D53248454

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118791
Approved by: https://github.com/qxy11, https://github.com/SherlockNoMad, https://github.com/khabinov
2024-02-01 10:09:07 +00:00
cyy
2b5a201aa6 [Exception] [3/N] Replace torch::NotImplementedError and torch::LinAlgError with C10 counterparts. (#116824)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116824
Approved by: https://github.com/albanD
2024-01-11 11:27:04 +00:00
youkaichao
16373bbc1f fix error message in pytorch (#115349)
Fixes https://dev-discuss.pytorch.org/t/typo-in-error-message/1709 .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115349
Approved by: https://github.com/Skylion007
2023-12-07 19:27:29 +00:00
Antonio Kim
7fc292930c Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-21 23:07:21 +00:00
Edward Z. Yang
fdaddec2c3 make_fx can now SymIntify int inputs (#113452)
This PR also contains a basket of fixes that were turned up by now testing more arguments with SymInt. I fixed as many of the easy ones as I could easily get earlier in this stack and a bunch here, but there are some more annoying ones I xfailed.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113452
Approved by: https://github.com/Chillee
ghstack dependencies: #113877, #113911
2023-11-18 06:39:09 +00:00
PyTorch MergeBot
252e68a83b Revert "Add support for torch.Generator type in TorchScript (#110413)"
This reverts commit 54493fe8c4.

Reverted https://github.com/pytorch/pytorch/pull/110413 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is, unfortunately, still breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/110413#issuecomment-1811625557))
2023-11-15 00:51:23 +00:00
Antonio Kim
54493fe8c4 Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-13 23:18:14 +00:00
PyTorch MergeBot
9a28a7b498 Revert "Add support for torch.Generator type in TorchScript (#110413)"
This reverts commit 27e31ab6e8.

Reverted https://github.com/pytorch/pytorch/pull/110413 on behalf of https://github.com/PaliC due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/110413#issuecomment-1799003164))
2023-11-07 15:53:32 +00:00
Antonio Kim
27e31ab6e8 Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-06 21:27:02 +00:00
Richard Zou
4f5acf8329 Log non-pt2_compliant ops encountered by Dynamo (#112581)
Summary:
See internal diff for more changes. Whenever we encounter a non-compliant op,
we add it to a set on the OutputGraph. When a compilation event happens, we log
the contents of this set.

I'm planning on flipping the `only_allow_pt2_compliant_ops` config from False
to True after the logging determines that existing models do not use
non-compliant ops.

Test Plan: - Tested the logging internally locally

Differential Revision: D50884828

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112581
Approved by: https://github.com/yanboliang
2023-11-01 22:53:16 +00:00
rzou
ae72607e5f Add way to determine which overload an OpOverloadPacket will resolve to (#112199)
The types are a bit weird (we accept and return a string) because there
is not really a notion of OpOverloadPacket vs OpOverload in C++.

Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112199
Approved by: https://github.com/ezyang
ghstack dependencies: #112198
2023-10-29 15:36:14 +00:00
rzou
235a04c0de Add getAllSortedOperatorsFor helper function (#112198)
I need this for later. This roughly returns all the OpOverloads
for an OpOverloadPacket in the order that the OpOverloadPacket decides
to resolve them in.

Test Plan:
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112198
Approved by: https://github.com/ezyang
2023-10-29 15:36:14 +00:00
Dino Viehland
5b71834785 Avoid c++ exception and stack trace (#111438)
Summary:
When raising an exception here this causes pybind11's dispatcher to kick in, which causes aiplatform's logic to kick in (aiplatform::error_reporting::util::printAddressesWithBestEffortLocationInfo), which ultimately uses `folly::symbolizer::Symbolizer::symbolize` for building up the stack trace.  In 3.8 this uses about 3.62% of the CPU time per pyperf (https://fburl.com/scuba/pyperf_experimental/on_demand/oi554uvy).  In Cinder 3.8 for some reason this is worse - using 5.94% of the CPU.

This exception is happening when doing a hasattr() on `prims` for things like `bitwise_left_shift` which don't exist: https://www.internalfb.com/code/fbsource/[2d695f650d00]/fbcode/caffe2/torch/_inductor/lowering.py?lines=590

That exception is ultimately going to be swallowed anyway, and the stack trace has no meaningful value.  Furthermore because this is kind of an expected outcome in the code versus some random C++ exception the stack trace is less valuable as well.

This changes this to return a (None, None) on the failure case instead of returning a valid op/overload list, avoiding the exception, and reclaiming the 3.62%-5.94% of time.

Test Plan: Existing CI and perf run: https://fburl.com/scuba/pyperf_experimental/on_demand/oi554uvy

Differential Revision: D50018789

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111438
Approved by: https://github.com/davidberard98
2023-10-26 23:55:34 +00:00
dshi7
fbff99ffea Add regex matching to Inductor all2all collective unit tests (#112077)
Fixes #111776

Support check_regex in FileCheck() by adding `find_regex` in `struct TORCH_API StringCordView`.
Callsite accepts RE syntax for std::regex.

However, I haven't figured out submatch ID yet.
For example, "buf5[0], buf6_inputs[0]" is still considered a match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112077
Approved by: https://github.com/yf225
2023-10-26 08:29:30 +00:00
jjsjann123
39c09d4da6 Revert "Revert "Nvfuser code removal (#111093)"" (#111604)
This reverts commit 715dfced72.

The original PR #111093 is reverted due to broken internal build.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111604
Approved by: https://github.com/davidberard98
2023-10-23 18:32:41 +00:00
Tobias Ringwald
cc28b9c10a Fixed a memory leak in PyTorchFileReader (#111703)
Fixes #111330.

This PR prevents `PyTorchFileReader` from leaking memory when initialized with an already opened file handle instead of a file name.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111703
Approved by: https://github.com/Skylion007
2023-10-21 10:11:43 +00:00
PyTorch MergeBot
715dfced72 Revert "Nvfuser code removal (#111093)"
This reverts commit 572628e520.

Reverted https://github.com/pytorch/pytorch/pull/111093 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, @albanD please help to support the author with the next steps to get this diff merged ([comment](https://github.com/pytorch/pytorch/pull/111093#issuecomment-1771434853))
2023-10-19 17:39:49 +00:00
jjsjann123
572628e520 Nvfuser code removal (#111093)
Removes the existing integration code & build of nvfuser in TorchScript.

Note that I intentionally left the part where we wipe out `third_party/nvfuser` repo. I'll do that in a separate PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111093
Approved by: https://github.com/albanD
2023-10-18 01:00:47 +00:00
soulitzer
fda0a965c7 [reland] Support SingletonSymNode mul with coefficient (#110673)
reland of https://github.com/pytorch/pytorch/pull/110369
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110673
Approved by: https://github.com/ezyang
2023-10-10 19:37:17 +00:00
PyTorch MergeBot
1c3fae46ee Revert "Support SingletonSymNode mul with coefficient (#110369)"
This reverts commit eb8feb8ff8.

Reverted https://github.com/pytorch/pytorch/pull/110369 on behalf of https://github.com/PaliC due to bottom diff is causing a plethora of internal failures ([comment](https://github.com/pytorch/pytorch/pull/110369#issuecomment-1749802899))
2023-10-05 23:51:28 +00:00
soulitzer
eb8feb8ff8 Support SingletonSymNode mul with coefficient (#110369)
We want to be able to use SingletonSymNode to represent strides for Jagged layout tensor. The following is for 3D, but easily generalizable to higher dimensions.

Constraints:
- [B, x, D] (where x represents the "variably lengthed dim") can be strided in two ways [x, 1, sum(x)] and [dx, d, 1]. We need two different placeholder values depending on how the jagged tensor is strided.
- When doing operations we need the strides of output tensors to be expressable in terms of the strides and sizes of the inner tensors. Given [B, x, D] @ [D, D'], the output strides is [x * D', D', 1] rather than some opaque [x2, D', 1]. This constraint exists because if I'm tracing, I need a symint to represent the output stride. This symint needs to come from somewhere; I get it in several ways: (1) create a constant, (2) unbacked symint, (3) create a new input using a source, (4) output of an operation on an existing symint. It is clear that (4) is what we want here, which brings us to the design below.

Design:

Given the two constraints, the most straightforward way to implement this is actually to update SingletonSymNode to include some scalar factor, i.e. Morally, SingletonSymNode represents `factor * [s_0, s_1, …, s_n]` This enables us to symbolically compute strides from sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110369
Approved by: https://github.com/ezyang
ghstack dependencies: #110044
2023-10-04 22:56:15 +00:00
Nikita Shulga
ad8aef0f98 [BE] [3/N] Use nested namespaces (#110314)
Mostly in torch/csrc/jit/runtime and in `ATen/cuda/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110314
Approved by: https://github.com/seemethere
2023-09-30 02:23:48 +00:00
jjsjann123
e6b5e0ecc6 removing the functionality of nvfuser python APIs (#110124)
Removing the functionalities from nvfuser python APIs.

Since the use of nvfuser has been deprecated before the last release cut. We are removing torch script support.

I'll have the next PR to actually remove the code base.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110124
Approved by: https://github.com/davidberard98
2023-09-29 01:45:00 +00:00
Edward Z. Yang
09622d8d49 Allow inferring size-nature from sizes passed to empty constructor (#109720)
This removes the need for many constrain_as_size calls as we now
infer them from error checking for sizes.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109720
Approved by: https://github.com/aakhundov
2023-09-21 17:57:40 +00:00
soulitzer
8bc00dfffd Hashing for constant and singleton SymInt/SymBool (#109170)
Bugfix:
- previously, SymBool does not implement `__eq__`, Python falls back to default `__eq__ `and `__hash__`
- in this PR, we make SymBool implement `__eq__`
- symbolic SymBool now raises an error when hashed just like SymInt/SymFloat

New feature:
- previously, SymInt and SymFloat are unhashable (even if you are singleton or constant)
- in this PR, SymInt and SymBool are hashable if singleton/constant

Stay the same:
- SymNode are hashable due to default Python behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109170
Approved by: https://github.com/ezyang
ghstack dependencies: #109169
2023-09-20 20:37:15 +00:00
soulitzer
5252fcb133 Handle constant SymBool in unary and binary operations (#109169)
In this PR:
- When Constant SymNode are detected in unary/binary ops demote them to plain int/bool before proceeding. Sometimes this means doing a unary op with a Constant SymNode would result in a plain bool.
- Introduce an is_symbolic method, only available from Python. We need this because isinstance(x, SymInt) is no longer sufficient to check whether a given int/SymInt is symbolic or not. See later PR in the stack to see how this is used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109169
Approved by: https://github.com/ezyang
2023-09-20 20:37:15 +00:00
cyy
efc7c366f4 Remove auto_gil.h (#108492)
auto_gil.h has been deprecated for a long time. We can switch to pybind11.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108492
Approved by: https://github.com/Skylion007
2023-09-05 08:26:13 +00:00
Ilya Sherstyuk
2b3917dc63 [ONNX] Fix memory leak when exporting models (#107244)
This commit fixes a memory leak caused by creating a new PyListObject using PyDict_Items() and not releasing that list later. This often prevented the entire model from being de-allocated even when all python references to it have gone out of scope.

Here is a repro script:

```python
import psutil, torch, transformers, gc, os, sys
import math

# Size in MB
model_size = 512

kB = 1024
MB = kB * kB
precision_size = 4 # bytes per float
activation_size = math.floor(math.sqrt(model_size * MB / precision_size))

class Net(torch.nn.Module):
    def __init__(self, activation_size):
        super(Net, self).__init__()
        self.linear = torch.nn.Linear(activation_size, activation_size)
    def forward(self, x):
        return {"result": self.linear(x)}

def collect_and_report(s):
    gc.collect()
    print(s)
    #print("psutil: ", psutil.virtual_memory().percent)
    print("CPU MB used by this process: ", psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2)
    print("GPU MB allocated by pytorch: ", torch.cuda.memory_allocated(0) / 1024 ** 2)
    print()

def run_test(device_str):
    device = torch.device(device_str)
    dummy_input = torch.zeros(activation_size, requires_grad=True).to(device)

    collect_and_report("Before loading model: ")
    model = Net(activation_size).to(device)
    collect_and_report("After loading model: ")

    torch.onnx.export(model, dummy_input, "dummy.onnx")
    collect_and_report("After exporting model: ")

    del model
    collect_and_report("After deleting model:")

print("Running CPU test: ")
run_test("cpu")

print("Running GPU test: ")
run_test("cuda")
```

Results with this commit:
```
Running CPU test:
Before loading model:
CPU MB used by this process:  346.5
GPU MB allocated by pytorch:  0.0

After loading model:
CPU MB used by this process:  861.078125
GPU MB allocated by pytorch:  0.0

After exporting model:
CPU MB used by this process:  880.12890625
GPU MB allocated by pytorch:  0.0

After deleting model:
CPU MB used by this process:  880.12890625
GPU MB allocated by pytorch:  0.0

Running GPU test:
Before loading model:
CPU MB used by this process:  991.9375
GPU MB allocated by pytorch:  0.04443359375

After loading model:
CPU MB used by this process:  992.19140625
GPU MB allocated by pytorch:  512.0888671875

After exporting model:
CPU MB used by this process:  1026.64453125
GPU MB allocated by pytorch:  520.25830078125

After deleting model:
CPU MB used by this process:  1026.64453125
GPU MB allocated by pytorch:  520.25830078125
```

With this commit:
```
Running CPU test:
Before loading model:
CPU MB used by this process:  372.7734375
GPU MB allocated by pytorch:  0.0

After loading model:
CPU MB used by this process:  887.18359375
GPU MB allocated by pytorch:  0.0

After exporting model:
CPU MB used by this process:  918.96875
GPU MB allocated by pytorch:  0.0

After deleting model:
CPU MB used by this process:  407.3671875
GPU MB allocated by pytorch:  0.0

Running GPU test:
Before loading model:
CPU MB used by this process:  516.6875
GPU MB allocated by pytorch:  0.04443359375

After loading model:
CPU MB used by this process:  516.75390625
GPU MB allocated by pytorch:  512.0888671875

After exporting model:
CPU MB used by this process:  554.25390625
GPU MB allocated by pytorch:  520.2138671875

After deleting model:
CPU MB used by this process:  554.25390625
GPU MB allocated by pytorch:  8.16943359375
```

Fixes #106976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107244
Approved by: https://github.com/BowenBao, https://github.com/kit1980
2023-08-17 22:15:28 +00:00
David Berard
25d87c8301 torch.ops.aten.*: sort aten ops before jit overloads (#107138)
Summary:
In fbcode, aten and jit ops can get registered in different orders depending on build mode. In dev mode, aten is registered first; in opt mode, jit is registered first.

This causes problems in torch.ops.aten.* calls; these calls use `torch._C._jit_get_operation`, which selects an overload based on the inputs to the call. It searches through the overloads for the op with the given name, and chooses the first one that matches the input types. "First" depends on whether aten or jit ops were registered first - e.g. in `test_both_scalars_cuda` in opt mode, it chooses `add.complex` and returns a complex value.

We also saw this issue in https://github.com/pytorch/pytorch/pull/103576.

This PR sorts the list of overloads first, putting the aten ops first.

Differential Revision: D48304930

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107138
Approved by: https://github.com/ezyang, https://github.com/eellison
2023-08-17 03:05:59 +00:00