Commit Graph

143 Commits

Author SHA1 Message Date
Sergii Dymchenko
f0f7452e31 Do not propogate (#124769)
Fix the propogate typos.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124769
Approved by: https://github.com/Skylion007
2024-04-24 02:18:18 +00:00
cyy
5f9b432494 [2/N] Replace std::tie with structural binding (#119879)
This PR follows #119774, Python generated code was changed to use structural binding.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119879
Approved by: https://github.com/albanD
2024-02-15 02:56:34 +00:00
cyy
e9e93c5350 [Reland] Move torch::make_unique to std::make_unique (#109780)
We can first try to move torch::make_unique to std::make_unique despite reverting of #108866 .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109780
Approved by: https://github.com/ezyang
2023-09-21 18:30:21 +00:00
PyTorch MergeBot
525e4f42d0 Revert "replace torch::make_unique with std::make_unique (#108866)"
This reverts commit 03e35efbf7.

Reverted https://github.com/pytorch/pytorch/pull/108866 on behalf of https://github.com/clee2000 due to Sorry but I found more usages of `torch::make_unique` internally, I can go change all of these, but I'd prefer if that gets done before this gets merged ([comment](https://github.com/pytorch/pytorch/pull/108866#issuecomment-1722577925))
2023-09-17 21:57:30 +00:00
cyy
03e35efbf7 replace torch::make_unique with std::make_unique (#108866)
It should be safe to remove the old torch::make_unique functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108866
Approved by: https://github.com/albanD
2023-09-14 20:52:26 +00:00
Lu Fang
c44ae5544f Skip the source info in the error report if the source code is too large (#105608)
Summary:
A small model (<100MB) took about 20mins to load, and consume 16GB memory.

Strobelight profiling: https://fburl.com/strobelight/abwtz0ry

We realized that calc_line_start_offsets is culprit, and the line_starting_offsets_ is a vector of line numbers.

There are >20000 places we generate such ErrorReport, and the line number is ~100000.

So total memory cost is about 100000 x 20000 x 8 = ~16GB.

We propose to skip the error info for extreme large source file (>1MB). And keep an environment variable to keep the ability to print the source code info for large source file.

Test Plan:
buck run mode/opt-split-dwarf scripts/lufang:load_pt_model -- --model_file_path=/data/local/models/961746678/2/961746678_2.predictor.disagg.gpu.local

before the change, it takes 20mins to load, and the model costs 16GB memory (the model itself is only <100MB)

after the change, it takes 15s to load.

The most of the time / space is spent on calc_line_start_offsets, https://fburl.com/code/2to60zqu

Differential Revision: D47610805

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105608
Approved by: https://github.com/hl475
2023-07-23 20:53:14 +00:00
cyy
77f2883c41 [Reland2] fix missing-prototypes warnings in torch_cpu (Part 4) (#102228)
This PR relands the changes introduced in PR https://github.com/pytorch/pytorch/pull/100849. The old PR turnd nnc_* functions into  static. We now add declarations for them and hope that inter builds will pass.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102228
Approved by: https://github.com/albanD
2023-06-02 22:04:44 +00:00
PyTorch MergeBot
32ce06a5ab Revert "[Reland] fix missing-prototypes warnings in torch_cpu (Part 4) (#101949)"
This reverts commit 4f2c007a1b.

Reverted https://github.com/pytorch/pytorch/pull/101949 on behalf of https://github.com/osalpekar due to As noted in @izaitsevfb's comment, we are still seeing linker errors, this time due to `nnc_prepacked_linear_clamp_run` being made a static function. ([comment](https://github.com/pytorch/pytorch/pull/101949#issuecomment-1560226880))
2023-05-23 22:53:47 +00:00
cyy
4f2c007a1b [Reland] fix missing-prototypes warnings in torch_cpu (Part 4) (#101949)
This PR relands the changes introduced in PR #100849. The old PR turnd  nnc_aten_embedding  into a static function, however, it is actually used in torch/csrc/jit/tensorexpr/operators/misc.cpp.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101949
Approved by: https://github.com/albanD
2023-05-22 10:53:07 +00:00
PyTorch MergeBot
498c34e8e8 Revert " fix missing-prototypes warnings in torch_cpu (Part 4) (#100849)"
This reverts commit c2f28d1c1d.

Reverted https://github.com/pytorch/pytorch/pull/100849 on behalf of https://github.com/izaitsevfb due to fails internal Meta builds, including fbcode and android, see D46009888: ld.lld: error: undefined symbol: nnc_aten_embedding ([comment](https://github.com/pytorch/pytorch/pull/100849#issuecomment-1555105800))
2023-05-19 19:05:15 +00:00
cyy
c2f28d1c1d fix missing-prototypes warnings in torch_cpu (Part 4) (#100849)
This PR fixes more missing-prototypes violations in the torch_cpu source following PRs #100053, #100147 and #100245

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100849
Approved by: https://github.com/albanD
2023-05-18 03:49:45 +00:00
Ivan Kobzarev
9daca46dc4 [jit][await] Apply review comments (#93284)
Differential Revision: [D42849920](https://our.internmc.facebook.com/intern/diff/D42849920)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93284
Approved by: https://github.com/malfet
2023-02-01 07:22:06 +00:00
Ivan Kobzarev
2fc73622f8 [jit] Support Awaitable type (#90863)
We want to make TorchRec sharded models TorchScriptable.

TorchRec sharded models uses generic types Awaitable[W] and LazyAwaitable[W] (https://github.com/pytorch/torchrec/blob/main/torchrec/distributed/types.py#L212).
In sharded model those types are used instead of contained type W, having the initialization function that produces object of type W.

At the moment when the first attribute of W is requested - `LazyAwaitable[W]` will call its initialization function (on the same stack), cache the result inside and work transparently as an object of W. So we can think about it as a delayed object initialization.

To support this behavior in TorchScript - we propose a new type to TorchScript - `Await`.
In eager mode it works the same as `LazyAwaitable[W]` in TorchRec, being dynamically typed - acting as a type `W` while it is `Await[W]`.

Within torchscript it is `Await[W]` and can be only explicitly converted to W, using special function `torch.jit.awaitable_wait(aw)`.
Creation of this `Await[W]` is done via another special function `torch.jit.awaitable(func, *args)`.

The semantic is close to `torch.jit.Future`, fork, wait and uses the same jit mechanics (inline fork Closures) with the difference that it does not start this function in parallel on fork. It only stores as a lambda inside IValue that will be called on the same thread when `torch.jit.awaitable_wait` is called.

For example (more examples in this PR `test/jit/test_await.py`)
```
      def delayed(z: Tensor) -> Tensor:
          return Tensor * 3

      @torch.jit.script
      def fn(x: Tensor):
          aw: Await[int] = torch.jit._awaitable(delayed, 99)
          a = torch.eye(2)
          b = torch.jit._awaitable_wait(aw)
          return a + b + x
```

Functions semantics:

`_awaitable(func -> Callable[Tuple[...], W], *args, **kwargs) -> Await[W]`

Creates Await object, owns args and kwargs. Once _awaitable_wait calls, executes function func and owns the result of the function. Following _awaitable_wait calls will return this result from the first function call.

`_awaitable_wait(Await[W]) -> W`
Returns either cached result of W if it is not the first _awaitable_wait call to this Await object or calls specified function if the first.

`_awaitable_nowait(W) -> Await[W]`

Creates trivial Await[W] wrapper on specified object To be type complaint for the corner cases.

Differential Revision: [D42502706](https://our.internmc.facebook.com/intern/diff/D42502706)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90863
Approved by: https://github.com/davidberard98
2023-01-30 17:38:59 +00:00
Aaron Gokaslan
0247ed27cc Apply Clang-Tidy readability-container-size-empty (#93236)
Not only is this change usually shorter and more readable, it also can yield better performance. size() is not always a constant time operation (such as on LinkedLists), but empty() always is.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93236
Approved by: https://github.com/malfet
2023-01-29 23:28:19 +00:00
Nikita Shulga
8f1c3c68d3 [BE] Use nested namespaces in .cpp/.cu files (#92100)
As we live in C++17 world

This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
2023-01-13 16:32:34 +00:00
Aaron Gokaslan
3916d7a575 Apply modernize-use-emplace to aten, c10, torch (#91077)
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
2022-12-19 07:49:56 +00:00
Kazuaki Ishizaki
e0c194f10b Fix typos in messages under torch (#88961)
This PR fixes typos of messages and parms in c++ source and head files under `torch` directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88961
Approved by: https://github.com/albanD
2022-11-14 19:06:41 +00:00
Sergii Dymchenko
a0b3854548 Change seperate -> separate (#83056)
One instance was caught by Meta-internal "exact-word-misspell" linter in D38505529.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83056
Approved by: https://github.com/huydhn, https://github.com/seemethere
2022-08-09 23:11:34 +00:00
Tugsbayasgalan Manlaibaatar
b4b60c2a2e Get rid of ENABLE_UPGRADERS macro (#77574)
Since it's been a while after we merged the upgrader design and we haven't encountered any issues, let's get rid of the macro for safe rollout
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77574
Approved by: https://github.com/gmagogsfm
2022-08-09 05:33:14 +00:00
Yu Guo
4c04f6da74 [jit] fix python enumerate with start kwarg (#80585)
fix https://github.com/pytorch/pytorch/issues/80150
turns out we have a unittest for this case but there is a typo so the test does not run.

With this fix both enumerate(x, start=1) and enumerate(x, 1) are supported.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80585
Approved by: https://github.com/davidberard98
2022-06-30 05:00:50 +00:00
Michael Suo
c10908cd41 [jit] fix indexing into a tensor with a tuple
As title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79335

Approved by: https://github.com/gmagogsfm
2022-06-13 19:51:47 +00:00
Elias Ellison
0d7be81c9c [JIT] Add Context Manager to force strict fusion
Fixes https://github.com/pytorch/pytorch/issues/75464 Adds a context manager that will throw if the ops in the context are not fused.

API is :
```
with torch.jit.strict_fusion():
    ...
```

A few TODOs:
[+] Compose/figure out how to do with autodiff - right now it will run on autodiff as well
[+] Support all of the nvfuser operators that are added in guarding
[+] Figure out what to do with control flow that isn't taken (right now it will just error). this is probably a source of the original issue :/  - will just error
[+] (After those are figured out) add to docs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75777
Approved by: https://github.com/davidberard98
2022-04-25 16:08:57 +00:00
Nikita Shulga
f6c275f55d Remove -Wno-unused-variable from utils.cmake (take 2) (#75538)
Summary:
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with  top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.

Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.

Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538

Reviewed By: anjali411

Differential Revision: D35747333

Pulled By: malfet

fbshipit-source-id: 3fc5828e44a4c05ba0e89e92613e6ebbdb260626
(cherry picked from commit c179fba21cfa2a0093fad50ccad5a22dd7cff52c)
2022-04-20 17:41:59 +00:00
PyTorch MergeBot
5c56b2286b Revert "Remove -Wno-unused-variable from utils.cmake"
This reverts commit 018cbe1f5c.

Reverted https://github.com/pytorch/pytorch/pull/75538 on behalf of https://github.com/seemethere
2022-04-19 17:19:09 +00:00
Nikita Shulga
018cbe1f5c Remove -Wno-unused-variable from utils.cmake
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with  top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.

Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.

Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538
Approved by: https://github.com/cpuhrsch
2022-04-19 15:26:55 +00:00
Elias Ellison
9a8e605565 Add support for legacy tensor constructors in JIT (#74785)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74785

Fix for https://github.com/facebookresearch/torchdynamo/issues/93

Because the constructor follow a non-standard input schema (variadic integers), they are handled specially in ir_emitter.

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D35362762

Pulled By: eellison

fbshipit-source-id: 960badf08ba2ab0818af5fd331aff3542051250f
(cherry picked from commit bd579dead5a5206fc6e5b535ecf4f99ae67ee135)
2022-04-06 18:11:23 +00:00
Elias Ellison
e50dd5ba97 [JIT] Allow empty temporary list literals to be matched to arbitrary types (#74768)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74768

As commented in code:
```
    // Empty List Literals that are not assigned to variables
    // may match to any list type in schema matching,
    // but still default to List[Tensor] if assigned to a variable
    // or returned from a function
    // Restricting empty list matching to temporary values
    // avoids difficult to handle cases such as
    // a = []
    // b = a
    // if cond:
    //    b.append(2)
    // else:
    //    a.append("hi")
    // This is also the same behavior that C++ allows with {}
    // (cannot assign to a variable typed as auto)
```

Fix for https://github.com/facebookresearch/torchdynamo/issues/95

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D35362760

Pulled By: eellison

fbshipit-source-id: da23e8889312001b60d64a1758da5c578b6fe5ea
(cherry picked from commit 75682f17204d6d444e7e7144472c6e833150c601)
2022-04-06 18:11:23 +00:00
gmagogsfm
fdd12a9f4c Support tensor.__getitem__() in TorchScript compilation (#73952)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/73952

Reviewed By: tugsbayasgalan

Differential Revision: D34743346

Pulled By: gmagogsfm

fbshipit-source-id: 2273c289c2224166cb1eed10a138d4ac7043ed83
(cherry picked from commit 37aefb9a95e0df4586bb623a1aaa974fbe799687)
2022-03-11 01:45:18 +00:00
Shunting Zhang
763ad1bf25 (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change (#72899)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72899

Reland D33282878 (911d527b87). This is the frontend change.
ghstack-source-id: 149204031

Test Plan: Refer to D33282878 (911d527b87). Also check CI

Reviewed By: gmagogsfm

Differential Revision: D34252127

fbshipit-source-id: 27b17ddd4d05d904eb91fd9ee094d9121f00e388
(cherry picked from commit 1d276baca3)
2022-02-16 03:45:15 +00:00
Michael Suo
7db4a48d92 Revert D33342569: (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change
Test Plan: revert-hammer

Differential Revision:
D33342569 (856157fcee)

Original commit changeset: 57984ac67ae2

Original Phabricator Diff: D33342569 (856157fcee)

fbshipit-source-id: 4c12235a1776a3652e7f91e93b626705759d5176
(cherry picked from commit 4cbd7d8bab)
2022-02-15 18:45:44 +00:00
Shunting Zhang
856157fcee (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change (#70471)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70471

Reland D33282878 (911d527b87). This is the frontend change.
ghstack-source-id: 149114933

Test Plan: Refer to D33282878 (911d527b87). Also check CI

Reviewed By: gmagogsfm

Differential Revision: D33342569

fbshipit-source-id: 57984ac67ae2c56c38f72d3b1fb69105901fb472
(cherry picked from commit b47cc935ee)
2022-02-15 07:21:19 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
b0fdca8855 Bump version number to 7 and compile old operators with old schema (#68358)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68358

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D33433730

Pulled By: tugsbayasgalan

fbshipit-source-id: 202c58365bae13195d3545cefcb0da9162b02151
2022-01-05 23:57:22 -08:00
Michael Suo
0ece9a49d7 Revert D33198155: Bump version number to 7 and compile old operators with old schema
Test Plan: revert-hammer

Differential Revision:
D33198155 (d35fc409ad)

Original commit changeset: 38a1185f9ecb

Original Phabricator Diff: D33198155 (d35fc409ad)

fbshipit-source-id: 411aaeb4e047aad9202db50d4d0f2ff35bc51f9d
2022-01-04 13:44:59 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
d35fc409ad Bump version number to 7 and compile old operators with old schema (#68358)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68358

Test Plan: Imported from OSS

Reviewed By: samdow

Differential Revision: D33198155

Pulled By: tugsbayasgalan

fbshipit-source-id: 38a1185f9ecb34a33f737ad0b060b3490956300c
2022-01-04 01:31:25 -08:00
Bo Wu
bf610f08b0 Back out "Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions"
Summary: as title

Test Plan:
```
buck run mode/opt-split-dwarf -c=python.package_style=inplace //ai_infra/distributed_ai/pyper_test_framework/templates:pyper_release_v2 -- --model inline_cvr_post_imp_deterministic_shrunk_pyper_release_v2 --cluster TSCTestCluster --hpc_identity oncall_pyper_oncall --stage prod_offline_training --test_module training_platform
...
############## Start inline_cvr_post_imp_model Test Results Analysis ##############
I1226 22:03:56.789000 3346280 test_driver.py:139  UNKNOWN     ] Test finished in 808.2743511786684 seconds.
+-------------------------+---------+------------------------+-----------------+
| Test Case               | Status  | Message                | Model Entity ID |
+-------------------------+---------+------------------------+-----------------+
| SmallWorld_release_test | Success | finished successfully. | 987987491       |
+-------------------------+---------+------------------------+-----------------+
I1226 22:03:56.790000 3346280 test_driver.py:143  UNKNOWN     ] test_run_id: 3d085f61-28d1-411d-bd27-940ea2554b23 use this id to find your run in scuba pyper_test_framework
I1226 22:03:56.792000 3346280 test_driver.py:160  UNKNOWN     ] Calling cleanup
I1226 22:03:56.792000 3346280 training_platform_test_launcher.py:385  UNKNOWN     ] Stopping launched jobs 1
I1226 22:03:59.563122 3346280 ClientSingletonManager.cpp:100] Shutting down Manifold ClientSingletonManager
```

Reviewed By: seemethere

Differential Revision: D33325936

fbshipit-source-id: 64414bf7061ad77e8ac12eb8abafee4043e0fa1e
2021-12-27 09:11:46 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
63e58d262a Extend Graph, CompilationUnit, and schema matching to accept optional operator version number (#69914)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69914

Test Plan: Imported from OSS

Reviewed By: qihqi

Differential Revision: D33198157

fbshipit-source-id: b98d9401e515f695d6cf99116f695edc7976bf01
2021-12-25 00:35:33 -08:00
Shunting Zhang
911d527b87 Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions (#70339)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70339

When a python program is translated to TorchScript, the python exception type is dropped. This makes users's life hard when they need to categorize errors based more than only exception message.

Here we make the change so when we raise a python exception, we record the fully qualified class name for the exception. Later on when the TorchScript is interpreted, a special exception CustomJITException is thrown. User can get the python class name from CustomJITException::getPythonClassName .

Note that, this diff does not customize the mapping from C++ exception to Python exception. It's left to the users to do whatever mapping they want.

Code under scripts/shunting are just my own experimental code. I can split them out if requested.
ghstack-source-id: 146221879

Test Plan: buck test mode/opt //caffe2/test:jit

Reviewed By: gmagogsfm

Differential Revision: D33282878

fbshipit-source-id: 910f67a764519f1053a48589d1a34df69001525d
2021-12-24 00:25:40 -08:00
Zhengxu Chen
b55a2500d2 [jit] Remove graph() call from abstract Function interface. (#65967)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65967

Graph is an implementation detail. If user wants to get access to the
underlying graph, they should be able to explicitly dynamic cast instead.
ghstack-source-id: 141659819

Test Plan: no behavior change.

Reviewed By: gmagogsfm

Differential Revision: D31326153

fbshipit-source-id: a0e984f57c6013494b92a7095bf5bb660035eb84
2021-10-27 11:54:26 -07:00
Scott Wolchok
f65b4b7a4c [PyTorch] Avoid refcount bump in UnionType::canHoldType (#66693)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66693

Passing a `TypePtr` by value causes an unnececssary refcount
bump. We don't need to take ownership, so `const Type&` is all we
need.

I considered providing a compatibility shim that takes `const
TypePtr&`, but doing so is dangerous because a
copy is required to convert from a more specific pointer like
`NoneTypePtr`.
ghstack-source-id: 140737081

Test Plan: CI

Reviewed By: suo

Differential Revision: D31691869

fbshipit-source-id: f766ce3234a28771c2a9ca4c284eb3f96993a3d0
2021-10-18 17:39:59 -07:00
CodemodService FBSourceClangFormatLinterBot
a3d12bcdf9 [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D31681115

fbshipit-source-id: e2146e59a57ff27759de18b00fb644e9dc3c5672
2021-10-15 03:07:57 -07:00
Ansley Ussery
a1084401b0 Clean up DictLiteral and DictComprehension emission logic (#64953)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64953

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D30914687

Pulled By: ansley

fbshipit-source-id: ab9b9192a29f05b90c113c678e7c795bc087dc99
2021-10-14 17:35:39 -07:00
Ansley Ussery
a7b79033ea Clean up ListLiteral and ListComprehension emission logic (#64952)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64952

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D30914690

Pulled By: ansley

fbshipit-source-id: 83ac9bc6445f89b3f47c5404435bc6058c6f3bd7
2021-10-14 17:34:17 -07:00
Scott Wolchok
2d885ab73d [jit] Reduce refcounting of Types (#65345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345

FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165

Test Plan:
CI

perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.

Reviewed By: hlu1

Differential Revision: D31027361

fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
2021-10-08 09:03:04 -07:00
Nikita Shulga
4c4525fa5c Compile without -Wno-unused-variable (take 2) (#66041)
Summary:
Delete `-Wno-unused-variable` from top level `CMakeLists.txt`
Still suppress those warnings for tests and `torch_python`

Delete number of unused variables from caffe2 code
Use `(void)var;` to suppress unused variable in range loops
Use `C10_UNUSED` for global constructors and use `constexpr` instead of `static` for global constants

Do not delete `caffe2::OperatorBase::Output` calls as they have side effects

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66041

Reviewed By: ngimel

Differential Revision: D31360142

Pulled By: malfet

fbshipit-source-id: 6fdfb9f91efdc49ca984a2f2a17ee377d28210c8
2021-10-04 20:39:39 -07:00
Nikita Shulga
e4ee5ca698 Revert D31326599: [pytorch][PR] Compile without -Wno-unused-variable
Test Plan: revert-hammer

Differential Revision:
D31326599 (a6280ab653)

Original commit changeset: 924155f1257a

fbshipit-source-id: b8ee5bc0298637443232f5ee9ec79e51ed256faf
2021-10-01 20:40:47 -07:00
Nikita Shulga
a6280ab653 Compile without -Wno-unused-variable (#65954)
Summary:
Delete `-Wno-unused-variable` from top level `CMakeLists.txt`
Still suppress those warnings for tests and `torch_python`

Delete number of unused variables from caffe2 code
Use `(void)var;` to suppress unused variable in range loops
Use `C10_UNUSED` for global constructors and use `constexpr` instead of `static` for global constants

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65954

Reviewed By: ngimel

Differential Revision: D31326599

Pulled By: malfet

fbshipit-source-id: 924155f1257a2ba1896c50512f615e45ca1f61f3
2021-10-01 17:40:47 -07:00
Ansley Ussery
c60075d4b5 Preserve types during empty container assignment (#58911)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58911

Stack from [ghstack](https://github.com/ezyang/ghstack):
* __->__ #58911

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D30785623

Pulled By: ansley

fbshipit-source-id: 4e05d6369318974290fea02ad2bc148293c25090
2021-09-10 16:49:21 -07:00
Ansley Ussery
6831d8e379 Support Union in TorchScript (#64234)
Summary:
This PR is created to replace https://github.com/pytorch/pytorch/pull/53180 PR stack, which has all the review discussions. Reason for needing a replacement is due to a messy Sandcastle issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64234

Reviewed By: gmagogsfm

Differential Revision: D30656444

Pulled By: ansley

fbshipit-source-id: 77536c8bcc88162e2c72636026ca3c16891d669a
2021-09-03 06:12:24 -07:00
Richard Barnes
0ca5dc7f03 irange-ify 5 (#62114)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62114

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D29879534

fbshipit-source-id: 0b1d6d2c9062a2fd7a55b00cb9f3d59ec941bad3
2021-07-26 11:07:54 -07:00
Jerry Cai
873cc7a46d Support 3 argument variant of the getattr() call where the third arg is the default return value (#61599)
Summary:
Issue: https://github.com/pytorch/pytorch/issues/56909

Note the emitted code for such a call will either be a) getattr() call with first two args if the
attribute name (which must be a string literal) is determined to be valid based on the hasAttr() result,
or b) just the AST node for the default value (the 3rd arg) alone with no getattr call at all.

Test code:

```
import torch
import numpy as np

class Shape:
    def __init__(self):
        self.center = 1.0

def f(x):
    s = Shape()
    return getattr(s, "missing", [])

y = torch.jit.script(f)
print(y.graph)
```
Output:
```
graph(%x : Tensor):
  %s.1 : __torch__.Shape = prim::CreateObject()
  %2 : NoneType = prim::CallMethod[name="__init__"](%s.1) # ts.py:10:8
  %4 : Tensor[] = prim::ListConstruct()
  return (%4)
```

Another example:
```
import torch

class Shape:
    def __init__(self):
        self.center = 1.0

def f(x):
    s = Shape()
    y = getattr(s, "center")
    w : list[float] = [1.0]
    z = getattr(s, "missing", w)
    z.append(y)
    return z

y = torch.jit.script(f)
print(y.graph)
 --- output ---

graph(%x : Tensor):
  %5 : float = prim::Constant[value=1.]() # ts.py:12:23
  %s.1 : __torch__.Shape = prim::CreateObject()
  %2 : NoneType = prim::CallMethod[name="__init__"](%s.1) # ts.py:10:8
  %center : float = prim::GetAttr[name="center"](%s.1)
  %w.1 : float[] = prim::ListConstruct(%5)
  %11 : float[] = aten::append(%w.1, %center) # ts.py:14:4
  return (%w.1)
```
Fixes #{56969}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61599

Reviewed By: ZolotukhinM

Differential Revision: D29776058

Pulled By: jerryzhenleicai

fbshipit-source-id: 76333bd54002e08a064677c1f287115a80cc7c8e
2021-07-19 20:04:21 -07:00