- `FakeContext` hides all fields other than ctx.saved_tensors, this dynamo errors when the autograd.Function.backward uses other attrs on ctx and it also doesn't allow fallback to eager.
- If we remove it, we still can't fallback to eager: node variables are already freed (ctx.saved_tensors throws)
- However, we can fallback to "pseudo-eager" by using a duck-typed ctx and routing the ctx.saved_tensors to lifted tensors
- Dynamo tries to inline external_utils.call_backward, treats BackwardCFunction as a AutogradFunctionContextVariable (only used up until we create the fake context: FakeBackwardCFunction)
- we call_function backward from the forward class AutogradFunctionVariable, and we still pass in the fake context as a UserDefinedObjectVariable (can later use AutogradFunctionContextVariable + HOO graph speculate)
Fixes#125489#124827
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125661
Approved by: https://github.com/jansel
# Motivation
As discussed in [#124479](https://github.com/pytorch/pytorch/pull/124479), `torch.amp.autocast` can NOT be completely equivalent to `torch.cuda.amp.autocast` and `torch.cpu.amp.autocast` since `torch.amp.autocast` has NOT the default `dtype` for CPU (`torch.bfloat16` by default) and CUDA (`torch.float16` by default) respectively. We would like `torch.amp.autocast` to be more generic to help the developer/customer write the device-agnostic code. Because there are not enough reasons to add device-specific autocast `torch.xxx.amp.autocast` for each device backend.
# Solution
When `None` is passed to `dtype`, we should use `torch.get_autocast_dtype` to get the related dtype for each backend. Meanwhile, `torch.get_autocast_dtype` is necessary to be supported in JIT path for BC.
# Additional Context
With this PR, `torch.amp.autocast(device_type='cuda')` is equivalent to `torch.cuda.amp.autocast`.
Add two new UTs to cover this change in eager and jit path respectively.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125103
Approved by: https://github.com/albanD, https://github.com/jgong5, https://github.com/gujinghui
We guard on key order
1) When a key is a non-constant object
2) When we actually need key order - like .values, .items etc
For dicts/OrderedDicts that do not require key order guarding, we just rely on usual `GuardManger + DictGetItemGuardAccessor`. This is faster than going through the `list(d.keys())` based design for OrderedDicts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124779
Approved by: https://github.com/jansel
I'm going to setup some extra behavior when we set example value, so
I need a convenient place to interpose. I cannot easily do it on
meta itself because its a generic dict with no interposition point.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124176
Approved by: https://github.com/oulgen
ghstack dependencies: #124105, #124059
The current codegen is problematic if __compiled_fn_0 clears the inputs list, since we need it for assignment afterwards
```python
def forward(inputs):
__compiled_fn_0 = ... # The actual function needs to be provided
graph_out_0 = __compiled_fn_0(inputs) # clears inputs
temp_list = []
temp_list.append(graph_out_0[0])
inputs[4].grad = graph_out_0[1] # inputs is empty, index error
inputs[7].grad = graph_out_0[2]
inputs[8].grad = graph_out_0[3]
inputs[9].grad = graph_out_0[3]
del graph_out_0
return temp_list
```
With this fix, we use aliases to keep the tensors alive
```python
def forward(inputs):
__compiled_fn_0 = ... # The actual function needs to be provided
inputs_ref_1 = inputs[9]
inputs_ref_2 = inputs[4]
inputs_ref_3 = inputs[8]
inputs_ref_4 = inputs[7]
graph_out_0 = __compiled_fn_0(inputs)
temp_list = []
temp_list.append(graph_out_0[0])
inputs_ref_2.grad = graph_out_0[1]
inputs_ref_4.grad = graph_out_0[2]
inputs_ref_3.grad = graph_out_0[3]
inputs_ref_1.grad = graph_out_0[3]
del graph_out_0
return temp_list
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123359
Approved by: https://github.com/jansel
ghstack dependencies: #123630, #123674, #122353
For some reason, adding a `TYPE_CHECK` in DATA_PTR_MATCH guard in https://github.com/pytorch/pytorch/issues/123302 increases optimizer guard overhead for `MT5ForConditionalGeneration` by 10x. There is nothing special about MT5. As we are going to move towards the CPP guards soon, there is no reason to investigate this deeper.
We can use `ID_MATCH` instead of `DATA_PTR` match. Today both cant be serialized, so there is no one preference over the other.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123485
Approved by: https://github.com/mlazos
We should sparingly use ID_MATCH guards. When it comes to performance, ID_MATCH is much faster DATA_PTR for Python guards. However, the difference is very small in C++. So, its worth just using DATA_PTR_MATCH.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123302
Approved by: https://github.com/mlazos
ghstack dependencies: #123285
This PR:
- disallows FakeTensor.data_ptr when it is called inside PT2 or fx tracing.
- disallows FunctionalTensor.data_ptr (python FunctionalTensor is only used in
PT2)
The motivation behind this is that the leading cause of segfaults when
using custom ops with PT2 is calling .data_ptr on FunctionalTensor or
FakeTensor.
This change is BC-breaking. If your code broke as a result of this, it's
because there was a bug in it (these .data_ptr should never be
accessed!). You can either fix the bug (recommended) or get the previous
behavior back with:
```
from torch._subclasses.fake_tensor import FakeTensor
from torch._subclasses.functional_tensor import FunctionalTensor
data_ptr = 0 if isinstance(tensor, (FakeTensor, FunctionalTensor)) else tensor.data_ptr()
```
Test Plan:
- existing tests
Differential Revision: [D55366199](https://our.internmc.facebook.com/intern/diff/D55366199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122514
Approved by: https://github.com/ezyang, https://github.com/albanD, https://github.com/yifuwang, https://github.com/kurtamohler
Fixes#118795
This is a graph breaking partial fix for #120914. We still need -actual- module parametrization tracing support, but at least it doesn't blow up hard now.
**Background**: Module parametrization injects a property as the module parameter attribute that calls a `nn.Module` whose forward takes in a module parameter and returns a reparametrized module parameter.
Example:
```
class MyParametrization(nn.Module):
def forward(X):
# This reparametrization just negates the original parameter value
return -X
m = nn.Linear(...)
p = MyParametrization()
register_parametrization(m, "weight", p)
# Accessing the "weight" attribute will invoke p's forward() on m's original weight and return the output as the new weight.
# m.weight here is now an injected property that does the above instead of an actual Parameter.
# This property is defined in torch/nn/utils/parametrize.py.
m.weight
# NB: Parametrization changes the module type (e.g. torch.nn.utils.parametrize.ParametrizedLinear)
print(type(m))
```
**Problem 1**: Dynamo has special tracing rules for things in `torch.nn`. Parametrizing a module changes the type of the module and the parametrized attribute, so now these rules wrongly affect tracing here. To fix this:
* For parametrized modules, call `convert_to_unspecialized()` to restart analysis where Dynamo starts inlining the module.
**Problem 2**: The issue seen in #118795 is that Dynamo will see a dynamically constructed tensor when `m.weight` is called and introduce that to its `tensor_weakref_to_sizes_strides` cache during fake-ification. This tensor is also made to be a graph input, since it's a module parameter. When guards are created for this module parameter input, the logic calls `m.weight` again and tries to look the result up in the cache, but this is a different tensor now, giving the `KeyError` symptom. To fix this:
* Replace Dynamo's `tensor_weakref_to_sizes_strides` cache with a `input_source_to_sizes_strides` cache.
* This cache was originally introduced in #100128.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121041
Approved by: https://github.com/anijain2305
Reduces the `torch.compile(backend="eager")` for this code
~~~
def fn(x):
for _ in range(10000):
# x = torch.sin(x)
x = torch.ops.aten.sin(x)
# x = sin(x)
return x
~~~
From 18 seconds to 12 seconds.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121031
Approved by: https://github.com/jansel
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)
We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
By changing runtime symbolic asserts to using assert_scalar, the asserts can call into `expect_true` and modify the shape env so that we can run through the traced graph module with fake tensors. With assert_async, the asserts only get hit during runtime, but that means if we run the graph module with fake tensors, the asserts will not affect the shape env, so later data dependent calls to the fake tensors may result in GuardOnDataDependentSymNode errors.
https://github.com/pytorch/pytorch/issues/119587
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119608
Approved by: https://github.com/ezyang