Summary: Now that we have reached nanosecond granularity, we can now remove the temporary guards that were previously required for nanosecond precision.
Test Plan: Regression should cover this change
Reviewed By: aaronenyeshi
Differential Revision: D56444570
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124734
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Zoomer: https://www.internalfb.com/intern/zoomer/?profiling_run_fbid=796886748550189
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55925068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123650
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Tracing with flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_37_22.4155151.pt.trace.json.gz&bucket=gpu_traces
Tracing without flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_39_15.4166047.pt.trace.json.gz&bucket=gpu_traces
Tracing on main: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_42_43.4177559.pt.trace.json.gz&bucket=gpu_traces
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55087993
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122425
Approved by: https://github.com/aaronenyeshi
This PR only adds abstract class registration logic without touching existing tests so they still trace with real script object. The added tests are only for registration APIs and test error messages.
Our design is that the abstract implementation should be in Python. This is much better in terms of usability. But this also has implications for custom op that takes script object as input, which is detailed later in this stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122622
Approved by: https://github.com/zou3519
ghstack dependencies: #122619, #122620, #122621
Do not run test ConstantPropagation.CustomClassesCanBePropagated on a platform where QNNPACK is not supported.
For example, this test fails on M1 Mac because QNNPACK is not supported on M1 Mac:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
unknown file: Failure
as described in more details in the issue #88613.
After the PR, test passes successfully as below:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
[ OK ] ConstantPropagation.CustomClassesCanBePropagated (0 ms)
[----------] 1 test from ConstantPropagation (0 ms total)
Fixes#88613
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119139
Approved by: https://github.com/jcaip
Recently we made it possible to serialize ExportedPrograms with fake parameters/buffers/etc.
The serialization regime was kind of whacky; basically we serialized a stub and reassembled the FakeTensor using metadata that we had stashed elsewhere in the Graph state.
This was bad for a few reasons:
- Storing the metadata separately from the actual serialized object caused situations where you could have one but not the other. An example case is if you had a FakeTensor contained inside a TorchBind object—there was no obviously place to store the metadata for this. This actually happens—TensorQueue in fbgemm does this.
- It created an annoying cycle: we had to deserialize the Graph's tensor metadata in order to deserialize (potentially faked) constants, but we need constants in order to deserialize the Graph.
This fixes all that. The basic idea is to patch the reducer function for FakeTensor at serialization time, and serialize a copy of the FakeTensor metadata. We already are policing BC for the TensorMeta schema struct so it's not a net increase in the BC surface.
As a bonus, I fixed a weird bug with torchbind tracing where we were accidentally reinterpreting a torch.ScriptObject as a torch.ScriptModule (which was the root cause of some weird behavior @bahuang was seeing last week).
Differential Revision: [D53601251](https://our.internmc.facebook.com/intern/diff/D53601251/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119531
Approved by: https://github.com/zhxchen17
This PR adds the bare minimum functionality to get torchbind working in an e2e testable way on PT2.
It implements:
* ProxyTensor support
* Simple torch.export support (proxytensor-only path, e.g. non-strict).
* add some tests exercising the path.
Because all this is not fully baked, I hide the functionality behind a feature flag (`enable_torchbind_tracing()`) so it does not affect regular users for now.
Still on the agenda:
* Dynamo support
* Actual FakeMode support
* Mutability support
Hoping to get this first bit in as a standalone, as it will unblock some more extensive experimentation/testing going on internally.
Differential Revision: [D51825372](https://our.internmc.facebook.com/intern/diff/D51825372/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117697
Approved by: https://github.com/SherlockNoMad
Summary:
Move the profiler's Approximate Clock from libtorch to libc10. The main reason is to allow c10 features to get time.
The clock is using TSC when available for performance. CUDA Caching Allocator's implementation of memory snapshot will add the timestamps to memory events with this same clock in subsequent diff.
Test Plan: CI
Differential Revision: D50601935
Pulled By: aaronenyeshi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111972
Approved by: https://github.com/davidberard98
- rename `__HIP_PLATFORM_HCC__` to `__HIP_PLATFORM_AMD__`
- rename `HIP_HCC_FLAGS` to `HIP_CLANG_FLAGS`
- rename `PYTORCH_HIP_HCC_LIBRARIES` to `PYTORCH_HIP_LIBRARIES`
- workaround in tools/amd_build/build_amd.py until submodules are updated
These symbols have had a long deprecation cycle and will finally be removed in ROCm 6.0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111975
Approved by: https://github.com/ezyang, https://github.com/hongxiayang
This is reland of PRs #https://github.com/pytorch/pytorch/pull/108626 and #109564. We fixed the IOS build failure by changing
```
((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
```
to
```
((CHECK) ? (EXPR) : ([] { assert(false); }(), (EXPR)))
```
in TR2_OPTIONAL_ASSERTED_EXPRESSION, since the former syntax was invalid on Apple Clang. Anyway, we could apply the simple fix hoping that c10::optional would be replaced by std::optional soon.
We also enabled -Wdeprecated on c10.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110019
Approved by: https://github.com/clee2000
This PR enables `-Winconsistent-missing-destructor-override` and `-Winconsistent-missing-override`
and fixes violations.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 47e904e</samp>
This pull request updates the code of various classes and operators in the `caffe2` and `aten` subdirectories to use the `override` specifier instead of the `virtual` keyword for destructors and other virtual functions that override a base class function. This improves the code readability, quality, and consistency with C++ best practices. It also modifies the `./CMakeLists.txt` file to enable warnings for these specifiers, but disable errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104032
Approved by: https://github.com/malfet
Potential null dereference after dynamic cast was found during static analysis.
**Description:**
Dereference of `ctx` is performed in `TORCH_CHECK` on line 1176, while `ctx` pointer may equal `nullptr`.
Previous `TORCH_CHECK` on line 1175 checks the value of `ctx_ptr` pointer that may be of type that cannot be casted to `TestContext*`. In such case, `dynamic_cast` returns `nullptr` despite `ctx_ptr` is not equal to `nullptr`.
**Fix:**
- Check `ctx` instead of `ctx_ptr` for equality to zero.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97768
Approved by: https://github.com/kit1980
Use `append_cxx_flag_if_supported` to determine whether or not `-Werror` is supported
Do not suppress deprecation warnings if glog is not used/installed, as the way check is written right now, it will suppress deprecations even if `glog` is not installed.
Similarly, do not suppress deprecations on MacOS simply because we are compiling with protobuf.
Fix deprecation warnings in:
- MPS by replacing `MTLResourceOptionCPUCacheModeDefault`->`MTLResourceCPUCacheModeDefaultCache`
- In GTests by replacing `TYPED_TEST_CASE`->`TYPED_TEST_SUITE`
- In `codegen/onednn/interface.cpp`, by using passing `Stack` by reference rathern than pointer.
Do not guard calls to `append_cxx_flag_if_supported` with `if(CLANG)` or `if(GCC)`.
Fix some deprecated calls in `Metal` hide more complex exception under `C10_CLANG_DIAGNOSTIC_IGNORE`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97584
Approved by: https://github.com/kit1980
This PR is the first step towards refactors the build for nvfuser in order to have the coegen being a standalone library.
Contents inside this PR:
1. nvfuser code base has been moved to `./nvfuser`, from `./torch/csrc/jit/codegen/cuda/`, except for registration code for integration (interface.h/interface.cpp)
2. splits the build system so nvfuser is generating its own `.so` files. Currently there are:
- `libnvfuser_codegen.so`, which contains the integration, codegen and runtime system of nvfuser
- `nvfuser.so`, which is nvfuser's python API via pybind. Python frontend is now exposed via `nvfuser._C.XXX` instead of `torch._C._nvfuser`
3. nvfuser cpp tests is currently being compiled into `nvfuser_tests`
4. cmake is refactored so that:
- nvfuser now has its own `CMakeLists.txt`, which is under `torch/csrc/jit/codegen/cuda/`.
- nvfuser backend code is not compiled inside `libtorch_cuda_xxx` any more
- nvfuser is added as a subdirectory under `./CMakeLists.txt` at the very end after torch is built.
- since nvfuser has dependency on torch, the registration of nvfuser at runtime is done via dlopen (`at::DynamicLibrary`). This avoids circular dependency in cmake, which will be a nightmare to handle. For details, look at `torch/csrc/jit/codegen/cuda/interface.cpp::LoadingNvfuserLibrary`
Future work that's scoped in following PR:
- Currently since nvfuser codegen has dependency on torch, we need to refactor that out so we can move nvfuser into a submodule and not rely on dlopen to load the library. @malfet
- Since we moved nvfuser into a cmake build, we effectively disabled bazel build for nvfuser. This could impact internal workload at Meta, so we need to put support back. cc'ing @vors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89621
Approved by: https://github.com/davidberard98
We have known for a while that we should in principle support SymBool as a separate concept from SymInt and SymFloat ( in particular, every distinct numeric type should get its own API). However, recent work with unbacked SymInts in, e.g., https://github.com/pytorch/pytorch/pull/90985 have made this a priority to implement. The essential problem is that our logic for computing the contiguity of tensors performs branches on the passed in input sizes, and this causes us to require guards when constructing tensors from unbacked SymInts. Morally, this should not be a big deal because, we only really care about the regular (non-channels-last) contiguity of the tensor, which should be guaranteed since most people aren't calling `empty_strided` on the tensor, however, because we store a bool (not a SymBool, prior to this PR it doesn't exist) on TensorImpl, we are forced to *immediately* compute these values, even if the value ends up not being used at all. In particular, even when a user allocates a contiguous tensor, we still must compute channels-last contiguity (as some contiguous tensors are also channels-last contiguous, but others are not.)
This PR implements SymBool, and makes TensorImpl use SymBool to store the contiguity information in ExtraMeta. There are a number of knock on effects, which I now discuss below.
* I introduce a new C++ type SymBool, analogous to SymInt and SymFloat. This type supports logical and, logical or and logical negation. I support the bitwise operations on this class (but not the conventional logic operators) to make it clear that logical operations on SymBool are NOT short-circuiting. I also, for now, do NOT support implicit conversion of SymBool to bool (creating a guard in this case). This does matter too much in practice, as in this PR I did not modify the equality operations (e.g., `==` on SymInt) to return SymBool, so all preexisting implicit guards did not need to be changed. I also introduced symbolic comparison functions `sym_eq`, etc. on SymInt to make it possible to create SymBool. The current implementation of comparison functions makes it unfortunately easy to accidentally introduce guards when you do not mean to (as both `s0 == s1` and `s0.sym_eq(s1)` are valid spellings of equality operation); in the short term, I intend to prevent excess guarding in this situation by unit testing; in the long term making the equality operators return SymBool is probably the correct fix.
* ~~I modify TensorImpl to store SymBool for the `is_contiguous` fields and friends on `ExtraMeta`. In practice, this essentially meant reverting most of the changes from https://github.com/pytorch/pytorch/pull/85936 . In particular, the fields on ExtraMeta are no longer strongly typed; at the time I was particularly concerned about the giant lambda I was using as the setter getting a desynchronized argument order, but now that I have individual setters for each field the only "big list" of boolean arguments is in the constructor of ExtraMeta, which seems like an acceptable risk. The semantics of TensorImpl are now that we guard only when you actually attempt to access the contiguity of the tensor via, e.g., `is_contiguous`. By in large, the contiguity calculation in the implementations now needs to be duplicated (as the boolean version can short circuit, but the SymBool version cannot); you should carefully review the duplicate new implementations. I typically use the `identity` template to disambiguate which version of the function I need, and rely on overloading to allow for implementation sharing. The changes to the `compute_` functions are particularly interesting; for most of the functions, I preserved their original non-symbolic implementation, and then introduce a new symbolic implementation that is branch-less (making use of our new SymBool operations). However, `compute_non_overlapping_and_dense` is special, see next bullet.~~ This appears to cause performance problems, so I am leaving this to an update PR.
* (Update: the Python side pieces for this are still in this PR, but they are not wired up until later PRs.) While the contiguity calculations are relatively easy to write in a branch-free way, `compute_non_overlapping_and_dense` is not: it involves a sort on the strides. While in principle we can still make it go through by using a data oblivious sorting network, this seems like too much complication for a field that is likely never used (because typically, it will be obvious that a tensor is non overlapping and dense, because the tensor is contiguous.) So we take a different approach: instead of trying to trace through the logic computation of non-overlapping and dense, we instead introduce a new opaque operator IsNonOverlappingAndDenseIndicator which represents all of the compute that would have been done here. This function returns an integer 0 if `is_non_overlapping_and_dense` would have returned `False`, and an integer 1 otherwise, for technical reasons (Sympy does not easily allow defining custom functions that return booleans). The function itself only knows how to evaluate itself if all of its arguments are integers; otherwise it is left unevaluated. This means we can always guard on it (as `size_hint` will always be able to evaluate through it), but otherwise its insides are left a black box. We typically do NOT expect this custom function to show up in actual boolean expressions, because we will typically shortcut it due to the tensor being contiguous. It's possible we should apply this treatment to all of the other `compute_` operations, more investigation necessary. As a technical note, because this operator takes a pair of a list of SymInts, we need to support converting `ArrayRef<SymNode>` to Python, and I also unpack the pair of lists into a single list because I don't know if Sympy operations can actually validly take lists of Sympy expressions as inputs. See for example `_make_node_sizes_strides`
* On the Python side, we also introduce a SymBool class, and update SymNode to track bool as a valid pytype. There is some subtlety here: bool is a subclass of int, so one has to be careful about `isinstance` checks (in fact, in most cases I replaced `isinstance(x, int)` with `type(x) is int` for expressly this reason.) Additionally, unlike, C++, I do NOT define bitwise inverse on SymBool, because it does not do the correct thing when run on booleans, e.g., `~True` is `-2`. (For that matter, they don't do the right thing in C++ either, but at least in principle the compiler can warn you about it with `-Wbool-operation`, and so the rule is simple in C++; only use logical operations if the types are statically known to be SymBool). Alas, logical negation is not overrideable, so we have to introduce `sym_not` which must be used in place of `not` whenever a SymBool can turn up. To avoid confusion with `__not__` which may imply that `operators.__not__` might be acceptable to use (it isn't), our magic method is called `__sym_not__`. The other bitwise operators `&` and `|` do the right thing with booleans and are acceptable to use.
* There is some annoyance working with booleans in Sympy. Unlike int and float, booleans live in their own algebra and they support less operations than regular numbers. In particular, `sympy.expand` does not work on them. To get around this, I introduce `safe_expand` which only calls expand on operations which are known to be expandable.
TODO: this PR appears to greatly regress performance of symbolic reasoning. In particular, `python test/functorch/test_aotdispatch.py -k max_pool2d` performs really poorly with these changes. Need to investigate.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92149
Approved by: https://github.com/albanD, https://github.com/Skylion007