Commit Graph

71 Commits

Author SHA1 Message Date
Scott Wolchok
457afe48fd [caffe2] Micro-optimizations in BlobGetMutableTensor (#98103)
Make sure we don't call Tensor::GetDevice() twice. Remove redundant branch for the case when tensor->dtype() == options.dtype(); in this case we end up calling raw_mutable_data(options.dtype()) anyway!

Differential Revision: [D44596695](https://our.internmc.facebook.com/intern/diff/D44596695/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98103
Approved by: https://github.com/jerryzh168
2023-04-10 19:43:02 +00:00
Rui Zhu
19fe2b9db4 Adding quantized tensor shape/type info support for caffe2=>glow in caffe2 side (#18621)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18621

This diff added caffe2 support for onnxifi quantization.

Reviewed By: yinghai

Differential Revision: D14648767

fbshipit-source-id: 4ddb492cacbba6142305866e6dbb875880acaea3
2019-03-31 17:42:27 -07:00
Sebastian Messmer
64339dbd51 Fix and re-enable test case (#16643)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16643

The test was disabled in D13908117 because it conflicted with another diff that was about to land.
Now fixed the merge conflict and re-landing it.

Reviewed By: ezyang

Differential Revision: D13911775

fbshipit-source-id: b790f1c3a3f207916eea41ac93bc104d011f629b
2019-02-07 13:58:16 -08:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
Bram Wasti
af4d2b889c Enable undefined at::Tensor to be passed as Output (#16730)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16730

with Jerry's new updates Tensor must be defined -- as a result I've needed to update the shim for caffe2 ops being used in PyTorch

Reviewed By: smessmer

Differential Revision: D13946950

fbshipit-source-id: 6f77877c61a743f82bdfc2ad04d6ab583000cc18
2019-02-05 12:56:46 -08:00
Dmytro Dzhulgakov
aaff2fecda Remove caffe2::Tensor copy constructor (#15416)
Summary:
Based on offline discussion it should be less surprising to the users of existing code. Thus caffe2::Tensor is now a move-only class (as it used to be), explicit calls to UnsafeSharedInstance() are necessary to get shared_ptr behavior.

This change also identified a few places that misused the copy constructor - those are fixed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/15416

Reviewed By: Yangqing

Differential Revision: D13524598

fbshipit-source-id: aea12d6dff77342606fa88ce4ddddbff266245a7
2019-01-18 00:31:56 -08:00
Jerry Zhang
3ea5a9a66d Remove PythonOp non-CPU path and PytorchOp (#15417)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15417

Right now the way we test whether Blob contains a CPU tensor is broken in ```PythonOpBase``` is broken, which means non-CPU path might never be taken.
Searching through the codebase, non-gpu path is used in PythonDLPack, and it is used in PytorchOp which is unused. So we'll remove non-gpu path in this diff.

Reviewed By: dzhulgakov

Differential Revision: D13495011

fbshipit-source-id: 9fe9537f05026d2a2cf7051efa81d184de722710
2019-01-02 16:36:37 -08:00
Bram Wasti
83ad52634a Add FunctionSchema based Operator Registry (#13789)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13789

This enables creation of operators with FunctionSchema and IValue

Reviewed By: smessmer

Differential Revision: D13008791

fbshipit-source-id: 151efc88ac315f4a0ab0171a99774caaf767ef1e
2018-12-05 17:20:24 -08:00
Jerry Zhang
5805ef5a83 call raw_mutable_data when data type didn't match in BlobGetMutableTensor (#14513)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14513

att

Reviewed By: dzhulgakov

Differential Revision: D13245875

fbshipit-source-id: 3398a1f41a6195e120ed574dee887070e86dfe1f
2018-11-29 15:18:58 -08:00
Jerry Zhang
bcd7b03c2a Add XBlobGetMutableTensor that returns Tensor (#14424)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14424

Pull Request resolved: https://github.com/pytorch/pytorch/pull/14136

Since now Tensor is a shared_ptr, it doesn't make sense to have Tensor* around anymore,
so we want to change Tensor* to Tensor in the interface.
We added functions that work with `Tensor` instead of `Tensor*` in this diff.

To remove Tensor*, we'll do following
```
auto* Y = Ouptut(0);
Y->mutable_data...
```
-->
```
auto Y = Output(0);
Y.mutable_data...
```

But to run clangr codemod, we'll keep both APIs in different names, e.g. `Output` and `XOutput`, and do the refactor and then delete the old method and rename the new method into the old one.
For example for `Output`, we'll first codemod the callsites from `Output` to `XOutput`, then delete the old `Output` and rename `XOutput` to `Output` in the end.

Reviewed By: smessmer

Differential Revision: D12934074

fbshipit-source-id: d0e85f6ef8d13ed4e7a7505faa5db292a507d54c
2018-11-28 13:29:48 -08:00
Raghavendra Thodime
a02b3374d4 Revert D13144472: [fix] condition blob in while_op test changes data type
Differential Revision:
D13144472

Original commit changeset: af4d920a3148

fbshipit-source-id: 74d9f69fc66964b5e68b4b2cd2fd2be1f63e9d69
2018-11-28 10:43:22 -08:00
Jerry Zhang
5c84145354 condition blob in while_op test changes data type (#14279)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14279

att

Reviewed By: smessmer

Differential Revision: D13144472

fbshipit-source-id: af4d920a3148c648d1a428a5bcd56da19ea8c38c
2018-11-27 14:16:39 -08:00
Jerry Zhang
1c2ed4eb23 Tensor construction: combine Resize+mutable_data - 1/4 (#13942)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13942

Codemod generated with clangr shard mode, 25 files per diff,
motivation: https://github.com/pytorch/pytorch/pull/12407

Reviewed By: smessmer

Differential Revision: D13054770

fbshipit-source-id: a9e86e5dfcb4f7cebf5243e1d359fad064561bed
2018-11-19 15:33:50 -08:00
Sebastian Messmer
4b0fc5200b Fix include paths for typeid.h (#13689)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13689

Now that typeid.h lives in c10/util, the include paths should reflect that.

Reviewed By: ezyang

Differential Revision: D12912237

fbshipit-source-id: e54225f049f690de77cb6d5f417994b211a6e1fb
2018-11-14 18:04:09 -08:00
Jerry Zhang
e73943e488 Remove partially initialized Tensor + ShareData (#13522)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13522

Currently Tensor is a shared pointer to the underlying implementation, rather than a value, copying
the pointer will share the underlying TensorImpl, ShareData probably don't make sense anymore.

Reviewed By: dzhulgakov

Differential Revision: D12871708

fbshipit-source-id: d3773c66b7ed0bf1c37e886f69f59aec158b216b
2018-11-06 15:23:41 -08:00
Jerry Zhang
edd902594a Renaming meta() to dtype() - 1/2 (#13333)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13333

Codemod generated with clangr shard mode, 50 files per diff,
clangr code(meta->dtype): diffusion/FBS/browse/master/fbcode/caffe2/caffe2/fb/codemods/TensorMethodRename.cpp

Reviewed By: ezyang

Differential Revision: D12845168

fbshipit-source-id: 492091963d2211ea80215200e981965767566135
2018-10-31 17:14:08 -07:00
Roy Li
b818d31a3e use TypeMeta instead of ScalarType in TensorOptions (#13172)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13172

reland D10419671

Reviewed By: ezyang

Differential Revision: D12143282

fbshipit-source-id: 43504d06a901af30130ebe97fb0b33def45cdc9a
2018-10-29 11:15:37 -07:00
Peter Goldsborough
8797bb1d30 Revert D10419671: use TypeMeta instead of ScalarType in TensorOptions
Differential Revision:
D10419671

Original commit changeset: 9cc8c5982fde

fbshipit-source-id: c870ecdd3730cf695007ebb110d362996da05e5d
2018-10-26 11:09:58 -07:00
Roy Li
a70573b589 use TypeMeta instead of ScalarType in TensorOptions (#12768)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12768

Note: DefaultTensorOptions no longer fits in 64-bits.

I kept functions that take ScalarType as input to minimize changes for now.

Reviewed By: ezyang

Differential Revision: D10419671

fbshipit-source-id: 9cc8c5982fde9ff243e03d55c0c52c2aa2c7efd8
2018-10-26 09:27:12 -07:00
Jerry Zhang
dd7c2d4284 Change the function signature for caffe2::empty (#13015)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13015

att

Reviewed By: ezyang

Differential Revision: D10469310

fbshipit-source-id: f4621fe5d17bb4663192860f81effe6bdfe21bea
2018-10-24 13:14:24 -07:00
Jerry Zhang
353fdefdd6 dims() -> sizes() (caffe2/core) (#13014)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13014

Tensor method renaming using clangr

Reviewed By: ezyang

Differential Revision: D10467556

fbshipit-source-id: 7d7eaf5fc59bbb493c057d5b8bfdda03b140c97e
2018-10-24 12:49:28 -07:00
Jerry Zhang
ab1a25aa9b caffe2::empty for Resize+mutable_data refactor (#12407)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12407

We want to use tensor factory to refactor the caffe2's old way of initialize Tensor by Resize and mutable_data
in order to eliminate uninitialized Tensor.

Previously when we want to create a Tensor in caffe2, we'll do the following
```
Tensor x(CPU); // device type provided
x.Resize({1, 2, 3}); // size provided
x.mutable_data<float>(); // data type provided and memory allocated
```
This leaves Tensor in not fully initialized state during the process, to eliminate this, we
want to provide all the needed information in the begining. ATen already has its TensorFactories: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp, and there is a TensorOption, we want to adopt the same interface to ease future refactoring.

In the callsite, we used to have `Output(i)` that returns a `Blob` that contains an uninitialized `Tensor` and we'll call Resize and mutable_data afterwards to provide dimension and data type,
```
// uninitialized tensor
auto* Y = Output(0);
// set dimensions
Y->Resize({1, 2, 3});
// actually allocate the data
auto* data = Y->mutable_data<float>();
// After this step, Tensor is fully initialized.
```
We want to change it to the following:
```
// provide dimensions and TensorOptions which include device type and data type.
// This will set all the information of Tensor properly and also allocate memory.
auto* Y = Output(0, {1, 2, 3}, at::device({context_.device_type()}).template dtype<T>());
// Tensor is fully initialized after this step

// following `mutable_data` call won't allocate memory.
auto* data = Y->mutable_data<float>();
```

microbenchmarks
```
============================================================================
caffe2/caffe2/fb/benchmarks/core_overhead_benchmark.ccrelative  time/iter  iters/s
============================================================================
OperatorNewOutputTensorAPI                                   3.27us  306.05K
OperatorOldOutputTensorAPI                                   3.55us  281.54K
============================================================================
```

Reviewed By: ezyang

Differential Revision: D10207890

fbshipit-source-id: f54ddacaa057b7c6bc7d5a8290171f35e9e40e29
2018-10-17 13:03:06 -07:00
Edward Yang
5da8a8c785 Handle undefined tensor in blob correctly. (#12125)
Summary:
You can't GetDeviceType an undefined tensor, so test for this case
first.  This allows you to safely move tensors out of blobs.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12125

Reviewed By: smessmer

Differential Revision: D10080075

Pulled By: ezyang

fbshipit-source-id: bb99b089b6daa9d4db99015208f939d7ce4d4a79
2018-09-26 21:43:41 -07:00
Sebastian Messmer
b7ebc00979 Move Blob to ATen/core (#11924)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11924

Previous diffs removed Blob -> caffe2 dependencies, now we can move it to ATen/core.
This is pre-work for allowing storing Blob in IValue.

Reviewed By: ezyang

Differential Revision: D9980641

fbshipit-source-id: 32082a673ec94c42c20b2298adced8bb7ca94d07
2018-09-25 23:27:52 -07:00
Yangqing Jia
28dba2f928 Unify all *_EXPORT and *_IMPORT macros across c++ backend (#12019)
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.

This is a codemod by mechanically doing the following change:

CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019

Reviewed By: ezyang, teng-li

Differential Revision: D10016276

Pulled By: Yangqing

fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164
2018-09-25 17:41:05 -07:00
Sebastian Messmer
8f0db9bbbb Removing some dependency edges from Blob to other caffe2 (#12043)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043

Re-trying D9979976, this time with all call sites fixed.

D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.

Reviewed By: ezyang

Differential Revision: D10026392

fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
2018-09-25 11:40:24 -07:00
Maciej Bargiel
2cdf98a74d Back out "Removing some dependency edges from Blob to other caffe2"
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223

Differential Revision:
D10026321
Ninja: stable broken

fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
2018-09-25 01:11:14 -07:00
Sebastian Messmer
17a65bf9b6 Removing some dependency edges from Blob to other caffe2 (#11923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923

This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.

This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.

Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "

It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.

Reviewed By: ezyang

Differential Revision: D9979976

fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
2018-09-24 22:57:05 -07:00
Sebastian Messmer
b2b05b7c20 Move blob serialization to free functions (#11817)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11817

Blob::Serialize() and Blob::Deserialize() are now free functions SerializeBlob(), DeserializeBlob() instead.
This takes away access to Blob internals from them and makes future refactorings easier.

Reviewed By: ezyang

Differential Revision: D9882726

fbshipit-source-id: 3251ebd4b53fc12f5e6924a6e4a8db3846ab3729
2018-09-20 23:27:34 -07:00
Sebastian Messmer
53cf628503 Simplify Blob move constructor/assignment (#11402)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11402

- Simplify move constructor/assignment
- Make more things noexcept

Reviewed By: ezyang

Differential Revision: D9728631

fbshipit-source-id: 92562e30ea1e4d05ca857665a02b0ca66b0739e3
2018-09-18 15:09:40 -07:00
Sebastian Messmer
ce6906b051 Narrowing Blob (#11167)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11167

Narrow the Blob API as preparation for merging Blob/IValue

- get rid of templated IsType and Operator::InputIsType / OutputIsType
- Use 'using' instead of 'typedef' for DestroyCall (just for readability)

Reviewed By: ezyang

Differential Revision: D9623916

fbshipit-source-id: 952f0b0cf5a525094b02e8d2798dd57a56a9e1d8
2018-09-10 12:40:16 -07:00
Edward Yang
c45607f77f Static assert GetMutable is not passed with Tensor argument (#11323)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11323

If you do pass it this, you'll get a pointer to
UndefinedTensor; probably not what you want!

Reviewed By: Yangqing

Differential Revision: D9676205

fbshipit-source-id: 0bd3c22c2c40ac2958f95fc7a73b908af291cf22
2018-09-06 20:11:37 -07:00
Edward Yang
91797c0672 Replace direct include of caffe2.pb.h with an intermediary header caffe2_pb.h (#10946)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10946

```
codemod -d . --extensions cc,cpp,cu,cuh,h caffe2/proto/caffe2.pb.h caffe2/proto/caffe2_pb.h
```

Reviewed By: houseroad

Differential Revision: D9539945

fbshipit-source-id: 497d04720e8e7e61c05ffe1b23733d0cb774de7e
2018-08-28 11:57:08 -07:00
Yangqing Jia
0a809fc8b1 build changes to make cpu unified build working. (#10504)
Summary:
Properly annotated all apis for cpu front. Checked with cmake using

cmake -DUSE_ATEN=ON -DUSE_CUDA=OFF -DBUILD_ATEN=ON

and resulting libcaffe2.so has about 11k symbols.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10504

Reviewed By: ezyang

Differential Revision: D9316491

Pulled By: Yangqing

fbshipit-source-id: 215659abf350af7032e9a4b0f28a856babab2454
2018-08-15 17:22:36 -07:00
Edward Yang
ad76fc8807 s/DISABLE_COPY_AND_ASSIGN/AT_DISABLE_COPY_AND_ASSIGN/ (#10275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10275

Remove forwarding declaration in caffe2/core/common.h

```
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h \\bDISABLE_COPY_AND_ASSIGN AT_DISABLE_COPY_AND_ASSIGN
```

Reviewed By: mingzhe09088

Differential Revision: D9184809

fbshipit-source-id: 958cf5162b0d92b83ea9c2597abb77320ca57ce8
2018-08-07 08:54:26 -07:00
Jerry Zhang
3b3aff2ed6 IsType<TensorCPU> -> IsType<Tensor>(CPU) (#10135)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10135

att

Reviewed By: yinghai

Differential Revision: D9121892

fbshipit-source-id: 4a4a3bfc450896b619bf92c92ef218aaaefc3081
2018-08-03 17:24:59 -07:00
Jerry Zhang
5d3782b655 Fix IDEEP Copys (#10104)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10104

.

Reviewed By: yinghai

Differential Revision: D9109638

fbshipit-source-id: 319cc5711132314dfba0f09ac403522f21ad532b
2018-08-03 10:31:32 -07:00
Jerry Zhang
aebf3b47ae Remove template parameter from Tensor (#9939)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939

Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: ezyang, houseroad

Differential Revision: D9024330

fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
2018-07-27 10:56:39 -07:00
Jerry Zhang
969b62f276 Revert D8121878: Remove template parameter from Tensor
Differential Revision:
D8121878

Original commit changeset: 4a5e9a677ba4

fbshipit-source-id: d8e2c0bb145b52fbcca323b22d1d3346f0b3249e
2018-07-26 14:02:04 -07:00
Jerry Zhang
cd5adc7b5f Remove template parameter from Tensor (#13)
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: xw285cornell

Differential Revision: D8121878

fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
2018-07-26 10:25:23 -07:00
Dmytro Dzhulgakov
ae1ceef36a Allow TypeMeta hold non-default-constructible types (#8349)
Necessary for Tensor detemplatization (D8121878) - now tensor won't have default constructor (as we don't know the device).

Thus this diff makes TypeMeta be constructible with non-default-constructible types in which case ctor() is non-null but always throws.

It's dangerous however as we won't catch potential type errors at compile time. Luckily - the only place where ctor() is used is in Blob and Tensor which have templated wrappers there (GetMutable and mutable_data respectively). We can just enforce the necessary type requirements there explicitly as a static_assert.

It also changes the failure behavior to be throw() instead of abort(). Aborting the process is not cool for the library :)
2018-06-11 15:53:07 -07:00
Dmytro Dzhulgakov
46c0b01234 Revert D3314316 (#8346)
This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.
2018-06-11 14:23:10 -07:00
Paul Jesse Hellemn
b875fb281c
Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
Dmytro Dzhulgakov
1b4959e48d Type error message when RTTI is not enabled
Summary:
When RTTI was not enabled, previously we can only print
(RTTI not enabled ...) type error message. This is annoying when developing
on mobile environment. Adding gRegistry when #T to have basic string for type
easy type inference

Reviewed By: Yangqing

Differential Revision: D6849614

fbshipit-source-id: d41417d72fdcfb7b8c9ddc4ded604ea598572b73
2018-01-31 15:06:39 -08:00
Romain Cledat
d0accb85e0 Send/Recv C++ portion
Summary:
Implements send/receive calls in C++. This includes both a C2 independent
library in async/comm as well as the C2 operations in the c2 sub-directory

There are still several items to be addressed in future diffs:
  - multiple channels per pair to alleviate the issue with small message latency
  - re-add statistics per comm-client and per-op
  - continue adding test cases as usage patterns diversify

Reviewed By: akyrola

Differential Revision: D6095219

fbshipit-source-id: 6d72770dbac693d2b7035f03ce8c6df5ce03706e
2017-11-02 11:25:50 -07:00
Yangqing Jia
8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00
haracejacob
2ec294a8bb Fix a few typos and grammars in comment
Summary:
Fix a few typos and grammars in comment

by using language-check, python library
spell_checker source code is here : https://github.com/17-1-SKKU-OSS/011A/blob/master/spell_checker/spell_checker.py
here is the text file which indicates what things should be fixed :  https://github.com/17-1-SKKU-OSS/011A/tree/master/spell_checker/fix/caffe2
Closes https://github.com/caffe2/caffe2/pull/719

Differential Revision: D5165118

Pulled By: aaronmarkham

fbshipit-source-id: 7fb8ef7a99d03cd5fd2f9ebdb01b9865e90fc37b
2017-06-14 18:22:39 -07:00
Alisson Gusatti Azzolini
7772f1f182 Make Blob moveable
Summary:
Blob fits well the semantics of a noexcept moveable object since its semantic is equivalent o a unique_ptr.
This allows for example to have a std::vector<Blob>

Reviewed By: pietern

Differential Revision: D4760079

fbshipit-source-id: d652d89be91a90c70651936ff694e0449a2c406b
2017-03-29 14:07:30 -07:00
Dmytro Dzhulgakov
864f561525 Make BlobDeserialization throw exceptions instead of returning bool
Summary: Makes it much nicer to spot errors, especially in iPython notebook.

Reviewed By: kennyhorror

Differential Revision: D4465726

fbshipit-source-id: c0adaf5168248a70987ff9d5dfce54a622ff2219
2017-01-26 09:44:19 -08:00