Commit Graph

126 Commits

Author SHA1 Message Date
Richard Zou
4bd03b0242 Add python mode (#63496)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63496

This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.

Example usage:
```
with enable_python_mode(LoggingTensor):
    z = torch.empty([])
    assert isinstance(z, LoggingTensor)
```

There are quite a few changes that were made to support this.

First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.

Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.

To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.

Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.

There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.

Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.

Test Plan: - new tests

Reviewed By: malfet, albanD

Differential Revision: D30543236

Pulled By: zou3519

fbshipit-source-id: ef5444d96a5a957d1657b7e37dce80f9a497d452
2021-08-30 18:44:35 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
Edward Yang
aacc722aec Dispatch to Python via __torch_dispatch__ (#59760)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59760

See https://github.com/pytorch/pytorch/issues/59049

There are some moving parts to this PR, I'll structure this explanation so the straightforward parts go first, and then the less straightforward parts.

**The actual dispatch to Python.** The core logic of dispatch to Python lives in `concrete_dispatch_fn` in `torch/csrc/autograd/python_variable.cpp`. It takes the input IValue stack, scans all the arguments for Tensor arguments, and defers most of the heavy lifting to `handle_torch_function_no_python_arg_parser` which actually does all of the logic for calling out to torch dispatch (in particular, this function handles multiple dispatch situations for you). Because we have a different function name than regular `__torch_function__` handling, `handle_torch_function_no_python_arg_parser` is generalized to accept a magic method name to look for when testing if Tensors have custom handling or not. Unlike `__torch_function__`, by default there is no `__torch_dispatch__` on Tensor classes.

**Maintaining the Python dispatch key.** In order to get to the dispatch to Python logic, we must tag Tensors with the `__torch_dispatch__` magic method with the newly added Python dispatch key (separated from PythonFuncTorch to allow for a transitional period while they migrate to this mechanism). We expose a new private property `_is_python_dispatch` that assists in debugging if a Tensor is participating in Python dispatch or not. We apply the Python dispatch key the first time a PyObject for a Tensor is constructed (THPVariable_NewWithVar), testing if `__torch_dispatch__` exists with  then newly added `check_has_torch_dispatch`.

**Shallow copy and detach.** For the simple examples tested in this PR, most creations of Tensor route through the dispatcher. The exception to this is `shallow_copy_and_detach`, which bypasses the dispatcher and is used when saving tensors for backwards. When a Tensor is Python dispatch, we override the behavior of `shallow_copy_and_detach` to instead directly call into `__torch_dispatch__` to perform a `detach` operation (in the same way it would be invoked if you called `detach` directly). Because this Python call is triggered directly from c10::TensorImpl, it must be indirected through `PyInterpreter::detach`, which is the general mechanism for dynamic dispatching to the Python interpreter associated with a TensorImpl.

**torchdeploy compatibility.** The dispatch to Python logic cannot be directly registered to the dispatcher as it is compiled in the Python library, which will get loaded multiple times per torchdeploy interpreter. Thus, we must employ a two phase process. First, we register a fallback inside a non-Python library (aten/src/ATen/core/PythonFallbackKernel.cpp). Its job is to determine the appropriate PyInterpreter to handle the Python dispatch by going through all of the arguments and finding the first argument that has a PyObject/PyInterpreter. With this PyInterpreter, it makes another dynamic dispatch via "dispatch" which will go to the correct torchdeploy interpreter to handle dispatching to actual Python.

**Testing.** We provide a simple example of a LoggingTensor for testing, which can be used to generate TorchScript-like traces to observe what operations are being called when a Tensor is invoked. Although a LoggingTensor would be better implemented via an is-a relationship rather than a has-a relationship (as is done in the test), we've done it this way to show that arbitrarily complex compositions of tensors inside a tensor work properly.

**Known limitations.**

* We haven't adjusted any operator code, so some patterns may not work (as they lose the Python subclass in an unrecoverable way)
* `__torch_function__` must be explicitly disabled with `_disabled_torch_function_impl` otherwise things don't work quite correctly (in particular, what is being disabled is default subclass preservation behavior.)
* We don't ever populate kwargs, even when an argument is kwarg-only

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision:
D29017912
D29017912

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Pulled By: ezyang

fbshipit-source-id: a67714d9e541d09203a8cfc85345b8967db86238
2021-06-25 11:50:32 -07:00
Richard Barnes
b162d95e46 Fix a number of lint perf and safety issues in torch (#59897)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59897

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29037012

fbshipit-source-id: 7c16286d5fc2b67964fb65f8374dfff4d1a7aefb
2021-06-15 13:14:51 -07:00
Richard Barnes
3979cb0656 irange for size_t (#55320)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55320

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27572577

fbshipit-source-id: 97710fd2bb1303006b05828a0d1343b0b59ccb03
2021-06-03 01:04:13 -07:00
Richard Barnes
2ce23136d0 Use irange in torch/csrc utils (#55556)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55556

Test Plan: Sandcastle

Reviewed By: ezyang

Differential Revision: D27625936

fbshipit-source-id: 79065438f582a6f5fe6f1f796b6984767605197e
2021-06-02 15:47:00 -07:00
Joel Schlosser
ef32a29c97 Back out "[pytorch][PR] ENH Adds dtype to nn.functional.one_hot" (#59080)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59080

Original commit changeset: 3686579517cc

Test Plan: None; reverting diff

Reviewed By: albanD

Differential Revision: D28746799

fbshipit-source-id: 75a7885ab0bf3abadde9a42b56d479f71f57c89c
2021-05-27 15:40:52 -07:00
Thomas J. Fan
a7f4f80903 ENH Adds dtype to nn.functional.one_hot (#58090)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33046
Related to https://github.com/pytorch/pytorch/issues/53785

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58090

Reviewed By: zou3519

Differential Revision: D28640893

Pulled By: jbschlosser

fbshipit-source-id: 3686579517ccc75beaa74f0f6d167f5e40a83fd2
2021-05-24 13:48:25 -07:00
Kurt Mohler
fe8e5eb260 Change native functions to take c10::string_view args instead of std::string (#57680)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53546

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57680

Reviewed By: malfet

Differential Revision: D28511799

Pulled By: ezyang

fbshipit-source-id: 43142f994d048b28b3279ccdb7a28cbaa3190973
2021-05-20 18:15:45 -07:00
Ailing Zhang
0ecdbfebff s/InplaceOrView/ADInplaceOrView/g (#57372)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57372

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57324

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D28121821

Pulled By: ailzhang

fbshipit-source-id: f568dd2505f6279da9ffb93ce1d22e0f98c606bb
2021-05-01 22:56:18 -07:00
Nikita Shulga
eac02f85cf Fix more clang-tidy errors (#57235)
Summary:
In my last PR I've missed CUDA and distributed folders, fixing this now
This change is autogenerated by `python tool/clang_tidy.py -s`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57235

Reviewed By: janeyx99

Differential Revision: D28084444

Pulled By: malfet

fbshipit-source-id: bf222f69ee90c7872c3cb0931e8cdb84f0cb3cda
2021-04-28 23:29:10 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Ailing Zhang
be7a943bb8 s/AutoDispatchBelowAutograd/AutoDispatchBelowInplaceOrView. (#56657)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56657

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D27931526

Pulled By: ailzhang

fbshipit-source-id: 3af718df3435e2b0b30bc62070dbdc5aeeecdfb4
2021-04-23 15:50:00 -07:00
Ailing Zhang
3d904b56ec s/AutoNonVariableTypeMode/AutoDispatchBelowAutograd/ (#56423)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56423

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D27866606

Pulled By: ailzhang

fbshipit-source-id: e3942356dc3133d1c5722de40ec0d45e6a60f2f1
2021-04-20 17:17:46 -07:00
Edward Yang
6ec71ed4f9 Replace all direct cdata access with THPVariable_Unpack (#55799)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55799

I'm going to change the implementation of cdata soon so I need to
abstract over cdata access with a function.  Additionally, many
users are casting manually casting to THPVariable to access
the member so I can remove these unsafe casts in the client code
(the implementation, of course, is still doing an unsafe cast.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D27712130

Pulled By: ezyang

fbshipit-source-id: 95fcc013bf3913d67f2c634068eb5b3aab144cb3
2021-04-15 08:57:04 -07:00
Mike Ruberry
c0ac0fef4e Revert D27448156: irange for size_t
Test Plan: revert-hammer

Differential Revision:
D27448156 (041b4431b2)

Original commit changeset: 585da57d4de9

fbshipit-source-id: 8e047c29f391c0166e0a1a87c3fb2a0854377365
2021-04-03 19:14:00 -07:00
Richard Barnes
041b4431b2 irange for size_t (#55163)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27448156

fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
2021-04-02 23:22:29 -07:00
Peter Bell
70d0aab7bd De-prioritise Dimname and DimnameList in python overload resolution (#51350)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51350

`None` being a valid `Dimname` is awkward for optional `dim` arguments, as found
on NumPy's reduction functions like `std` and `var`. In these cases `dim=None`
should mean an all-reduction, but instead you get an error
"Please look up dimensions by name".

I've also had to fix `FunctionParameter::check` to actually check the first
element of `INT_LIST` arguments and reject non-int types. Otherwise, the dim
names end up calling the `int[]` overload and fail.

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D26756208

Pulled By: mruberry

fbshipit-source-id: 44221ca0f4822ec2c1f62b092466fd4f779eb45a
2021-03-02 23:07:08 -08:00
Hameer Abbasi
cf1882adeb Fix indexing for overrides. (#49324)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/46277

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49324

Reviewed By: mruberry

Differential Revision: D25959334

Pulled By: ezyang

fbshipit-source-id: bac48b8ffee89d10aa04c004de2b53b4e54a96c2
2021-01-20 11:34:02 -08:00
Taylor Robie
d31a760be4 move has_torch_function to C++, and make a special case object_has_torch_function (#48965)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48965

This PR pulls `__torch_function__` checking entirely into C++, and adds a special `object_has_torch_function` method for ops which only have one arg as this lets us skip tuple construction and unpacking. We can now also do away with the Python side fast bailout for `Tensor` (e.g. `if any(type(t) is not Tensor for t in tensors) and has_torch_function(tensors)`) because they're actually slower than checking with the Python C API.

Test Plan: Existing unit tests. Benchmarks are in #48966

Reviewed By: ezyang

Differential Revision: D25590732

Pulled By: robieta

fbshipit-source-id: 6bd74788f06cdd673f3a2db898143d18c577eb42
2021-01-10 19:23:35 -08:00
Taylor Robie
839c2f235f treat Parameter the same way as Tensor (#48963)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48963

This PR makes the binding code treat `Parameter` the same way as `Tensor`, unlike all other `Tensor` subclasses. This does change the semantics of `THPVariable_CheckExact`, but it isn't used much and it seemed to make sense for the half dozen or so places that it is used.

Test Plan: Existing unit tests. Benchmarks are in #48966

Reviewed By: ezyang

Differential Revision: D25590733

Pulled By: robieta

fbshipit-source-id: 060ecaded27b26e4b756898eabb9a94966fc9840
2021-01-10 19:18:31 -08:00
Sebastian Messmer
c7e9abb66a Making ops c10-full: list of optional tensors (#49138)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49138

See for details: https://fb.quip.com/QRtJAin66lPN

We need to model optional types explicitly, mostly for schema inference. So we cannot pass a `Tensor?[]` as `ArrayRef<Tensor>`, instead we need to pass it as an optional type. This PR changes it to `torch::List<c10::optional<Tensor>>`. It also makes the ops c10-full that were blocked by this.

## Backwards Compatibility

- This should not break the Python API because the representation in Python is the same and python_arg_parser just transforms the python list into a `List<optional<Tensor>>` instead of into a `List<Tensor>`.
- This should not break serialized models because there's some logic that allows loading a serialized `List<Tensor>` as `List<optional<Tensor>>`, see https://github.com/pytorch/pytorch/pull/49138/files#diff-9315f5dd045f47114c677174dcaa2f982721233eee1aa19068a42ff3ef775315R57
- This will break backwards compatibility for the C++ API. There is no implicit conversion from `ArrayRef<Tensor>` (which was the old argument type) to `List<optional<Tensor>>`. One common call pattern is `tensor.index({indices_tensor})`, where indices_tensor is another `Tensor`, and that will continue working because the `{}` initializer_list constructor for `List<optional<Tensor>>` can take `Tensor` elements that are implicitly converted to `optional<Tensor>`, but another common call pattern was `tensor.index(indices_tensor)`, where previously, the `Tensor` got implicitly converted to an `ArrayRef<Tensor>`, and to implicitly convert `Tensor -> optional<Tensor> -> List<optional<Tensor>>` would be two implicit conversions. C++ doesn't allow chaining. two implicit conversions. So those call sites have to be rewritten to `tensor.index({indices_tensor})`.

ghstack-source-id: 119269131

Test Plan:
## Benchmarks (C++ instruction counts):
### Forward
#### Script
```py
from torch.utils.benchmark import Timer

counts = Timer(
    stmt="""
        auto t = {{op call to measure}};
    """,
    setup="""
        using namespace torch::indexing;
        auto x = torch::ones({4, 4, 4});
    """,
    language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
#### Results
|  Op call                                                              |before   |after   |delta  |      |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x[0] = 1                                                                |11566015 |11566015|0      |0.00% |
|x.index({0})                                                            |6807019  |6801019 |-6000  |-0.09%|
|x.index({0, 0})                                                         |13529019 |13557019|28000  |0.21% |
|x.index({0, 0, 0})                                                      |10677004 |10692004|15000  |0.14% |
|x.index({"..."})                                                        |5512015  |5506015 |-6000  |-0.11%|
|x.index({Slice(None, None, None)})                                      |6866016  |6936016 |70000  |1.02% |
|x.index({None})                                                         |8554015  |8548015 |-6000  |-0.07%|
|x.index({false})                                                        |22400000 |22744000|344000 |1.54% |
|x.index({true})                                                         |27624088 |27264393|-359695|-1.30%|
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})})|123472000|123463306|-8694|-0.01%|

### Autograd
#### Script
```py
from torch.utils.benchmark import Timer

counts = Timer(
    stmt="""
        auto t = {{op call to measure}};
    """,
    setup="""
        using namespace torch::indexing;
        auto x = torch::ones({4, 4, 4}, torch::requires_grad());
    """,
    language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
Note: the script measures the **forward** path of an op call with autograd enabled (i.e. calls into VariableType). It does not measure the backward path.

#### Results
|  Op call                                                              |before   |after   |delta  |      |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x.index({0})                                                            |14839019|14833019|-6000| 0.00% |
|x.index({0, 0})                                                         |28342019|28370019|28000| 0.00% |
|x.index({0, 0, 0})                                                      |24434004|24449004|15000| 0.00% |
|x.index({"..."})                                                       |12773015|12767015|-6000| 0.00% |
|x.index({Slice(None, None, None)})                                      |14837016|14907016|70000| 0.47% |
|x.index({None})                                                        |15926015|15920015|-6000| 0.00% |
|x.index({false})                                                        |36958000|37477000|519000| 1.40% |
|x.index({true})                                                         |41971408|42426094|454686| 1.08% |
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})}) |168184392|164545682|-3638710| -2.16% |

Reviewed By: bhosmer

Differential Revision: D25454632

fbshipit-source-id: 28ab0cffbbdbdff1c40b4130ca62ee72f981b76d
2021-01-04 05:04:02 -08:00
Iurii Zdebskyi
5716b7db72 Enabled Scalar lists (#48222)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48222

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D25074765

Pulled By: izdeby

fbshipit-source-id: 96ebe3c9907178c9338c03fb7993b2ecb26db8f4
2020-12-11 16:04:50 -08:00
Hameer Abbasi
d478605dec Fix classmethod override argument passing. (#47114)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47069.
Fixes https://github.com/pytorch/pytorch/issues/46824.
Fixes https://github.com/pytorch/pytorch/issues/47186

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47114

Reviewed By: ngimel

Differential Revision: D24649598

Pulled By: ezyang

fbshipit-source-id: af077affece7eceb1e4faf9c94d15484796b0f0e
2020-11-11 09:25:48 -08:00
Iurii Zdebskyi
e7564b076c Refactor scalar list APIs to use overloads (#45673)
Summary:
Refactor foreach APIs to use overloads in case of scalar list inputs.
Tested via unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45673

Reviewed By: heitorschueroff

Differential Revision: D24053424

Pulled By: izdeby

fbshipit-source-id: 35976cc50b4acfe228a32ed26cede579d5621cde
2020-10-19 09:28:49 -07:00
chengjun
5741de883a Define the record_stream method in native_functions.yaml (#44301)
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.

Fixes https://github.com/pytorch/pytorch/issues/36556

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301

Reviewed By: glaringlee

Differential Revision: D23763954

Pulled By: ezyang

fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
2020-10-13 09:15:22 -07:00
Peter Bell
8b39498a23 codegen: Allow string arguments to have defaults (#45665)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45665

Fixes #43944

Note that the codegen doesn't use a proper parser so, in the same way as with lists, the string `, ` cannot appear in defaults or it will be interpreted as a splitting point between arguments.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D24141835

Pulled By: ezyang

fbshipit-source-id: 578127861fd2504917f4486c44100491a2c40343
2020-10-06 21:53:56 -07:00
Iurii Zdebskyi
d5748d9a1a Enable binary ops with Scalar Lists with for foreach APIs (#45298)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45298

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D23931986

Pulled By: izdeby

fbshipit-source-id: 281267cd6f90d57a169af89f9f10b0f4fcab47e3
2020-09-25 12:58:34 -07:00
Xinyu Li
26001a2334 Revert D23753711: [pytorch][PR] Add foreach APIs for binary ops with ScalarList
Test Plan: revert-hammer

Differential Revision:
D23753711 (71d1b5b0e2)

Original commit changeset: bf3e8c54bc07

fbshipit-source-id: 192692e0d3fff4cade9983db0a1760fedfc9674c
2020-09-24 11:55:49 -07:00
iurii zdebskyi
71d1b5b0e2 Add foreach APIs for binary ops with ScalarList (#44743)
Summary:
In this PR:
1) Added binary operations with ScalarLists.
2) Fixed _foreach_div(...) bug in native_functions
3) Covered all possible cases with scalars and scalar lists in tests
4) [minor] fixed bug in native_functions by adding "use_c10_dispatcher: full" to all _foreach functions

tested via unit tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44743

Reviewed By: bwasti, malfet

Differential Revision: D23753711

Pulled By: izdeby

fbshipit-source-id: bf3e8c54bc07867e8f6e82b5d3d35ff8e99b5a0a
2020-09-24 08:30:42 -07:00
Lu Fang
f15e27265f [torch.fx] Add support for custom op (#43248)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43248

We add the support of __torch_function__ override for C++ custom op. The logic is the same as the other components, like torch.nn.Module.
Refactored some code a little bit to make it reusable.

Test Plan: buck test //caffe2/test:fx -- test_torch_custom_ops

Reviewed By: bradleyhd

Differential Revision: D23203204

fbshipit-source-id: c462a86e407e46c777171da32d7a40860acf061e
2020-09-02 16:08:37 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Nitish Awasthi
64965c4572 Replaced blacklist with blocklist (#42097)
Summary:
Closes https://github.com/pytorch/pytorch/issues/41726

Fixes https://github.com/pytorch/pytorch/issues/41726

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42097

Reviewed By: ngimel

Differential Revision: D22779535

Pulled By: SplitInfinity

fbshipit-source-id: 1d414af22a1b3e856a11d64cff4b4d33160d957b
2020-07-28 12:08:54 -07:00
Nathan Goldbaum
1e230a5c52 rewrite C++ __torch_function__ handling to work with TensorList operands (#41575)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41575

Fixes https://github.com/pytorch/pytorch/issues/34294

This updates the C++ argument parser to correctly handle `TensorList` operands. I've also included a number of updates to the testing infrastructure, this is because we're now doing a much more careful job of testing the signatures of aten kernels, using the type information about the arguments as read in from `Declarations.yaml`. The changes to the tests are required because we're now only checking for `__torch_function__` attributes on `Tensor`, `Optional[Tensor]` and elements of `TensorList` operands, whereas before we were checking for `__torch_function__` on all operands, so the relatively simplistic approach the tests were using before -- assuming all positional arguments might be tensors -- doesn't work anymore. I now think that checking for `__torch_function__` on all operands was a mistake in the original design.

The updates to the signatures of the `lambda` functions are to handle this new, more stringent checking of signatures.

I also added override support for `torch.nn.functional.threshold` `torch.nn.functional.layer_norm`, which did not yet have python-level support.

Benchmarks are still WIP.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34725

Reviewed By: mruberry

Differential Revision: D22357738

Pulled By: ezyang

fbshipit-source-id: 0e7f4a58517867b2e3f193a0a8390e2ed294e1f3
2020-07-17 08:54:29 -07:00
David Reiss
fb9e44f8dd Add support for float[]? arguments in native_functions.yaml (#37175)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175

ghstack-source-id: 106938114

Test Plan: Upcoming diffs use this for upsampling.

Differential Revision: D21209994

fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def
2020-07-13 11:51:10 -07:00
Gregory Chanan
96057c0080 Fix missing deprecation warning for Tensor.nonzero(). (#40187)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40187

There were two issues:
1) The hand-written definition included an ambiguous default, which made the deprecated signature not selected.  This didn't match the handwritten torch.nonzero, now they do.
2) A parsing bug for empty argument lists meant the signature wasn't being marked as deprecated.

Test Plan: Imported from OSS

Differential Revision: D22118236

Pulled By: gchanan

fbshipit-source-id: a433ce9069fef28aea97cbd76f2adf5a285abd73
2020-06-19 09:24:48 -07:00
Jiakai Liu
72b0447f8d [pytorch] move tracing logic to a separate dispatch backend (#38467)
Summary:
This PR moves tracing logic out of the generated VariableType kernels, to associate it with a new dedicated dispatch key Tracer.
It also toggles the dispatch key set at various places to keep the semantics unchanged - see the inline [Tracing Mode Switches] note.

Sample generated code:
```
Tensor & __ilshift___Tensor(Tensor & self, const Tensor & other) {
  #if !defined(PYTORCH_DISABLE_TRACING)
  torch::jit::Node* node = nullptr;
  std::shared_ptr<jit::tracer::TracingState> tracer_state;
  if (jit::tracer::isTracing()) {
    tracer_state = jit::tracer::getTracingState();
    at::Symbol op_name;
    op_name = jit::Symbol::fromQualString("aten::__ilshift__");
    node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
    jit::tracer::recordSourceLocation(node);
    jit::tracer::addInputs(node, "self", self);
    jit::tracer::addInputs(node, "other", other);
    tracer_state->graph->insertNode(node);

    jit::tracer::setTracingState(nullptr);
  }
  #endif
  static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("aten::__ilshift__", "Tensor");
  c10::Dispatcher::singleton().redispatch<Tensor &, Tensor &, const Tensor &>(op, c10::DispatchKey::Tracer, self, other);
  #if !defined(PYTORCH_DISABLE_TRACING)
  if (tracer_state) {
    jit::tracer::setTracingState(std::move(tracer_state));
    jit::tracer::addOutput(node, self);
  }
  #endif
  return self;
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/38467

ghstack-source-id: 105215150

Test Plan: CI

Differential Revision: D21570684

fbshipit-source-id: 1a96761830307f9a934f38bfb9fe8b5b1763e0e0
2020-06-04 01:51:30 -07:00
David Reiss
78529f6de7 Whitespace cleanup (#37165)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37165

ghstack-source-id: 102773591

Test Plan: CI

Reviewed By: kimishpatel

Differential Revision: D21209997

fbshipit-source-id: c5eef259aade2ad66095231e139ba125e759445b
2020-05-06 13:01:56 -07:00
Gregory Chanan
46288465fe Print keyword-only arg symbol for function signature suggestions. (#36780)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36780

Fixes: https://github.com/pytorch/pytorch/issues/36773

Test Plan: Imported from OSS

Differential Revision: D21081993

Pulled By: gchanan

fbshipit-source-id: 624b0077f88208aafa131ab7b3e5f1fe9dd70987
2020-04-17 07:30:46 -07:00
Hameer Abbasi
7c825bad10 [RELAND] Add __torch_function__ benchmarks (#36138)
Summary:
Re-land of https://github.com/pytorch/pytorch/issues/35530 and https://github.com/pytorch/pytorch/issues/34645
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36138

Differential Revision: D20893770

Pulled By: ezyang

fbshipit-source-id: 75ab688a086f5fb87412a853df5246c0c39704ca
2020-04-10 09:14:31 -07:00
Michael Suo
6491bf2855 Revert D20777341: [pytorch][PR] Add __torch_function__ benchmarks.
Test Plan: revert-hammer

Differential Revision:
D20777341

Original commit changeset: 6aaaf2a07553

fbshipit-source-id: 1c324f91f85ac624bf878297c96c682a46958954
2020-04-01 10:23:00 -07:00
Hameer Abbasi
8c534bb0bd Add __torch_function__ benchmarks. (#35530)
Summary:
Since the last one was apparently reverted.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35530

Differential Revision: D20777341

Pulled By: ezyang

fbshipit-source-id: 6aaaf2a0755359074ae3d0efe32018d78dafe976
2020-04-01 06:30:17 -07:00
Alban Desmaison
4d39aeec27 Revert D20653072: [pytorch][PR] Add __torch_function__ benchmarks.
Test Plan: revert-hammer

Differential Revision:
D20653072

Original commit changeset: e7e363f8a1b8

fbshipit-source-id: e75e4979399d6fee10e00a673ea45b9bcc0fd447
2020-03-26 13:36:59 -07:00
Hameer Abbasi
bf24753570 Add __torch_function__ benchmarks. (#34645)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34645

Differential Revision: D20653072

Pulled By: ezyang

fbshipit-source-id: e7e363f8a1b84fc0c354586e266a695e4a2ea60e
2020-03-26 11:29:10 -07:00
Mike Ruberry
7c1ea736ba Extends true_divide to be a method (#34794)
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.

In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.

New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794

Differential Revision: D20545507

Pulled By: mruberry

fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
2020-03-23 23:12:23 -07:00
Mike Ruberry
3b7e1cd2cc Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20509850

Pulled By: mruberry

fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
2020-03-18 15:00:53 -07:00
Mike Ruberry
a1eaaea288 Revert D20497453: [pytorch][PR] Makes floor_divide a method, adds sparse floor division
Test Plan: revert-hammer

Differential Revision:
D20497453

Original commit changeset: ac326f2007d8

fbshipit-source-id: b94b89b1a25521506e3d0a6b072d3d4d8c55e63d
2020-03-18 01:48:50 -07:00
Mike Ruberry
b7129050e7 Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20497453

Pulled By: mruberry

fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
2020-03-18 00:01:45 -07:00
Hameer Abbasi
6b701de130 Add types argument to __torch_function__ (#34303)
Summary:
This PR adds the `types` argument to `__torch_function__` as per RFC 0001: https://github.com/pytorch/rfcs/pull/3
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34303

Differential Revision: D20474992

Pulled By: ezyang

fbshipit-source-id: cdd40b3b38f3bda4ece8812a629f5db87e919d01
2020-03-17 13:32:00 -07:00
Terence Feng
3c76b2aeea Replace THPLayout with at::Layout in Python Argument Parser (#34543) (#34584)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34584

Test Plan:
```
python setup.py develop
python test/test_torch.py
```
Output:
```
...
Ran 3834 tests in 198.825s

OK (skipped=180)
```

Imported from OSS

Differential Revision: D20403330

fbshipit-source-id: 41474d5e7001db070f98ac8379f909f0ac74deb6
2020-03-12 07:19:00 -07:00