Commit Graph

23 Commits

Author SHA1 Message Date
Brian Hirsh
76fbd755c1 Reland of "D27708346: generate xla codegen in-tree" (#56601)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56601

Updating it to ensure that RegistrationDeclarations.yaml is completely
unchanged

This reverts commit 90e532f3ef.

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D27915305

Pulled By: bdhirsh

fbshipit-source-id: 491a025c44221690dad849f9a2166934130c0fec
2021-04-21 19:36:31 -07:00
Brian Hirsh
90e532f3ef Revert D27708346: generate xla codegen in-tree
Test Plan: revert-hammer

Differential Revision:
D27708346 (51d0212d0f)

Original commit changeset: 2289edd641f3

fbshipit-source-id: 86711c07db19833b9e772c558e12accba1432499
2021-04-21 11:07:45 -07:00
Brian Hirsh
51d0212d0f generate xla codegen in-tree (#55050)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55050

not ready for review yet

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D27708346

Pulled By: bdhirsh

fbshipit-source-id: 2289edd641f30277d7561cf2d48ec69c6a2137a9
2021-04-21 08:19:08 -07:00
Brian Hirsh
eca98fedb5 split out NamedCType from CType. Remove direct string comparison from autograd codegen (#55334)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55334

The goal of this PR is to clean up some of the autograd codegen to compare C++ types using `CType` objects instead of raw strings. My last PR in the stack made that string comparison a little more fragile, since the raw C++ strings needed to be namespace-aware.

I confirmed byte-for-byte no codegen changes vs. the last PR (which added namespaces to the codegen) by running `diff -qr ../pytorch-common_test/torch/csrc/autograd/generated/ ../pytorch-callgrind_test_after2/torch/csrc/autograd/generated/` and `diff -qr ../pytorch-common_test/build/aten/src/ATen/ ../pytorch-callgrind_test_after2/build/aten/src/ATen/`

Note that a better end-state for the autograd codegen would be to do all of its type pattern matching directly off of JIT types, instead of off of CType’s (which are really just generated from JIT types, incorporating C++ specific semantics). That looks like it’ll require a pretty substantial change though, so I’m not doing it in this PR.

As part of this change (and after talking with ezyang), I split off the `CType` data class into a separate `NamedCType` class, which holds a name and a `CType`. This way, `CType` only knows about actual C++ types, making it easier to compare CType’s to each other in the codegen when we only care about the type. The core change is in `types.py`, but it required a bunch of downstream changes to update all of the places where we create `CType`s to create `NamedCType`s instead.

The main change in the autograd codegen was that I updated `SavedAttribute` to store a `NamedCType`. The other autograd changes all pretty much came from that change.

Test Plan: Imported from OSS

Reviewed By: bhosmer

Differential Revision: D27708347

Pulled By: bdhirsh

fbshipit-source-id: 3e07c80569c7b229c638f389e76e319bff6315f9
2021-04-16 11:43:08 -07:00
Brian Hirsh
164bee1d09 Return a CType instead of a string for returns, beef up CType (#55046)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55046

Updating `returns` in the codegen to return a CType instead of a raw string.

This has benefit of putting all stringifying logic through CType, which is useful in the followup PR when I add namespaces.

I also added new CTypes for other templated C++ types: array, vector and tuple. Mostly because it makes the namespacing logic in the next PR significantly easier. It also seems more natural to me that `BaseCType` shouldn't represent specializations of templated types.

There's a little bit of weirdness, types that are currently *only* used for returns, i.e. `TupleCType`. Returns aren't named, so I opted not to give it one- so we can add it in later if we discover that we need it.

Test Plan: Imported from OSS

Reviewed By: bhosmer

Differential Revision: D27708348

Pulled By: bdhirsh

fbshipit-source-id: 230b210c3e53be1bd362105fbea8451055dc59a8
2021-04-16 11:41:46 -07:00
Sam Estep
4753100a3b Un-ignore F403 in .flake8 (#55838)
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html

This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).

This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838

Test Plan: CI. You can also run `flake8` locally.

Reviewed By: jbschlosser

Differential Revision: D27724232

Pulled By: samestep

fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
2021-04-13 09:24:07 -07:00
Wenlei Xie
70af5db7ca Remove use_c10_dispatcher option (#54969)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54969

With all use cases to hacky wrapper removed, all kernels will be
dispatched with c10 full dispatcher.
ghstack-source-id: 125434790

Test Plan: buck build //caffe2/aten/...

Reviewed By: ezyang, walterddr

Differential Revision: D27436596

fbshipit-source-id: 7a146d1f4a983b4a81f8552be4eec6c482b6bea2
2021-03-31 16:24:24 -07:00
Ailing Zhang
9f75de278f Move common autograd utils functions from gen_variable_type.py to api/autograd.py. (#53340)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53340

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D26973914

Pulled By: ailzhang

fbshipit-source-id: 8367a08b27b25808782c77aadc3c67d07c354957
2021-03-11 19:58:45 -08:00
Sebastian Messmer
e4c41b6936 Remove codegen logic to support non-c10-full ops (#49164)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49164

This PR removes the logic paths in codegen that were responsible for handling non-c10-full ops.
This only goes through our basic codegen. It does not simplify C++ code yet and it does not remove the codegen for generated unboxing wrappers yet.
ghstack-source-id: 119450487

Test Plan: waitforsandcastle

Reviewed By: ezyang

Differential Revision: D25462977

fbshipit-source-id: 7e70d14bea96948f5056d98125f3e6ba6bd78285
2021-01-06 14:17:36 -08:00
Edward Yang
3efd5d8f01 Introduce tools.codegen.api.translate (#49122)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49122

cpparguments_exprs has induced a lot of head scratching in many recent PRs for how to structure the code in a good way.  This PR eliminates the old algorithm for an entirely new algorithm inspired by logic programming.  The net result is shorter, cleaner and should be more robust to future changes.

This PR is a bit of a whopper.  Here is the order to review it.

- tools/codegen/api/types.py
  - Deleted CppArgument, CppArgumentPackIface (and subclasses), CppExpr, DispatcherExpr, DispatcherArgument, NativeExpr, NativeArgument, MetaArgument. All things previously called XArgument are now Binding. All things previously called XExpr are now Expr. I deleted the `__str__` implementation on Binding and fixed all call sites not to use it. On Binding, I renamed `str_no_default` and `str_default` to `defn` and `decl` for better symmetry with the corresponding signature concepts, although I'm open to naming them back to their original versions.
  - Obviously, things are less type safe without the class distinctions. So I introduce a new ADT called CType. CType represents the *semantic C++ type* of a binding: it is both the C++ type (e.g., `const Tensor&`) as well as the argument name that specifies what the  binding denotes (e.g., `other`). Every binding now records its CType. The key observation here is that you don't actually care if a given expression is from the cpp or dispatcher or native API; what you care is having enough information to know what the expression means, so you can use it appropriately. CType has this information. For the most part, ArgNames are just the string names of the arguments as you see them in JIT schema, but there is one case (`possibly_redundant_memory_format`) where we encode a little extra information. Unlike the plain strings we previously used to represent C++ types, CType have a little bit of structure around optional and references, because the translation code needs to work around these concepts.
  - I took the opportunity to kill all of the private fields like `_arguments` and `_returns_type` (since the argument types don't make sense anymore). Everything is computed for you on the fly. If this is a perf problem in codegen we can start using `cached_property` decorator.
  - All of the heavy lifting in CppSignature.argument_packs has been moved to the cpp module. We'll head over there next. Similarly, all of the exprs methods are now calling translate, the new functionality which we haven't gotten to yet
- tools/codegen/api/cpp.py
   - We refactor all of the type computation functions to return CType instead of str. Because CTypes need to know the denotation, there is a new `binds: ArgName` argument to most functions that provides the denotation, so we can slot it in. (An alternative would have been to construct CTypes without denotations and then fill them in post-facto, but I didn't do it this way. One downside is there are some places where I need a CType without denotation, so I fill these in with `__placeholder__` whenever this happens).
  - `argument` and `arguments` are now extremely simple. There is no more Pack business, just produce one or more Bindings. The one thing of note is that when both a `memory_format` and `options` are in scope, we label the memory format as `possibly_redundant_memory_format`. This will be used in translation
- tools/codegen/api/dispatcher.py and tools/codegen/api/native.py - same deal as cpp.py. One thing is that `cpparguments_exprs` is deleted; that is in the translator
- tools/codegen/api/translate.py - the translator! It uses a very simple backwards deduction engine to work out how to fill in the arguments of functions. There are comments in the file that explain how it works.
- Everything else: just some small call site tweaks for places when I changed API.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: ljk53

Differential Revision: D25455887

Pulled By: ezyang

fbshipit-source-id: 90dc58d420d4cc49281aa8647987c69f3ed42fa6
2020-12-16 16:18:40 -08:00
Edward Yang
9b0ffb9fb3 Delete cpp.group_arguments (#49043)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49043

Previously, this function had nontrivial algorithmic content,
but after #48195, this was just a swiss army knife for pasting
together arguments while maintaining structure.  I added some
more properties for Arguments for convenient access in this way,
and then inlined the implementation of group_arguments into all of its call
sites, simplifying whenever contextual.  This might be controversial, but I
think the resulting code is easier to understand.

You may notice that there is some modest code duplication between
dispatcher.cpparguments_exprs and CppSignature.argument_packs.
This is a known problem and I will be attempting to fix it in
a follow up PR.

Confirmed to be byte-for-byte compatible.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D25455885

Pulled By: ezyang

fbshipit-source-id: 8fbe066e8c3cb7ee8adb5b87296ec5bd7b49e01f
2020-12-10 18:20:46 -08:00
Edward Yang
267641a245 Rename positional and kwarg_only to have flat prefix (#49042)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49042

I want the names positional and kwarg_only to give the unflat
representation (e.g., preserving TensorOptionsArguments in the
returned Union).  So I regret my original naming choice when
I moved grouping to model.  This renames them to have flat_ prefix
and also adds a flat_non_out argument for cases where you just
want to look at non-out arguments.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D25455884

Pulled By: ezyang

fbshipit-source-id: f923f8881267a3e3e8e9521519412f7cc25034fc
2020-12-10 18:20:43 -08:00
Sebastian Messmer
3ef36dca8e Faithful out arguments (#47712)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47712

This adds a faithful API for ops with out arguments, as described in https://docs.google.com/document/d/1h7nBibRwkRLQ8rsPhfALlwWR0QbkdQm30u4ZBwmaps8/edit# .

After this, an op will generate the following overloads for the C++ API:

```cpp
// Generated from the aten::abs operator (NOT from aten::abs.out)
Tensor at::abs(Tensor& self)

// Generated from the aten::abs.out operator
Tensor& at::abs(Tensor& self, Tensor& out)
Tensor& at::abs_out(Tensor& out, Tensor& self)

```

This is an important step towards making those ops c10-full (it allows VariableType, XLA and other backends to ignore reordering and just call through with the same argument order), but this does not make any of those ops c10-full yet.
It enables the faithful API independent from c10-fullness. That means the API is more consistent with the same API for all ops and making an op c10-full in the future will not trigger future C++ API changes.
ghstack-source-id: 118068091

Test Plan: waitforsandcastle

Reviewed By: ezyang

Differential Revision: D24835252

fbshipit-source-id: dedfabd07140fc8347bbf16ff219aad3b20f2870
2020-12-08 03:48:42 -08:00
Edward Yang
ba5686f8c5 Refactor argument fields in FunctionSchema to Arguments (#48182)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48182

I'm planning to add a bunch more argument fields following
https://github.com/pytorch/pytorch/pull/45890#discussion_r503646917 and
it will be a lot more convenient if the arguments get to live
in their own dedicated struct.  Type checker will tell you if
I've done it wrong.  No change to output.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: ljk53

Differential Revision: D25057897

Pulled By: ezyang

fbshipit-source-id: dd377181dad6ab0c894d19d83408b7812775a691
2020-12-02 07:57:06 -08:00
Sebastian Messmer
4534bf5799 Fix NativeFunctions.h for c10-full ops (#46090)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46090

ghstack-source-id: 114269272

Test Plan: vs base diff: https://www.internalfb.com/intern/fblearner/details/223884639/

Reviewed By: ezyang

Differential Revision: D24219942

fbshipit-source-id: 6f338c7c0dd5adfe2fba8b36ccc340032d3faef8
2020-10-14 06:32:36 -07:00
Edward Yang
d705083c2b Refactor dispatcher and native to use Signature structure. (#45990)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45990

In #45890 we introduced the concept of a CppSignature, which bundled
up all of the information necessary to declare a C++ signature for
the cpp API.  This PR introduces analogous concepts for dispatcher
and native: DispatcherSignature and NativeSignature.

The three interfaces are not particularly well coupled right now,
but they do have some duck typing coincidences:

- defn() which renders the C++ definition "bool f(int x)"
- decl() which renders the C++ declaration "bool f(int x = 2)"
- type() which renders the C++ function type "bool(int)"

Maybe at some point we'll introduce a Protocol, or a supertype.
Many other methods (like arguments()) have varying types.  These
signatures also have some helper methods that forward back to real
implementations in the api modules.  Something to think about is
whether or not we should attempt to reduce boilerplate here or
not; I'm not too sure about it yet.

The net effect is we get to reduce the number of variables we
have to explicitly write out in the codegen, since now these are all
bundled together into a signature.  Something extra special happens
in BackendSelect, where we now dynamically select between dispatcher_sig
and native_sig as "how" the backend select is implemented.

A little bit of extra cleanup:
- Some places where we previously advertised Sequence, we now advertise
  a more informative Tuple.
- defn() may take an optional positional parameter overriding the entire
  name, or a kwarg-only prefix parameter to just add a prefix to the
  name.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D24223100

Pulled By: ezyang

fbshipit-source-id: f985eced08af4a60ba9641d125d0f260f8cda9eb
2020-10-13 08:34:48 -07:00
Edward Yang
8d5c899b19 Rename legacy_dispatcher to native. (#45974)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45974

The term "legacy dispatcher" caused a bunch of confusion between
me and Sebastian when discussing what the intended semantics of
legacy dispatcher argument is.  Legacy dispatcher argument implies
that you ought NOT to use it when you have use_c10_dispatcher: full;
but that's not really what's going on; legacy dispatcher API describes
the API that you write native:: functions (NativeFunctions.h) to.
Renaming it here makes this more clear.

I applied these seds:

```
git grep -l 'legacy_dispatcher' | xargs sed -i 's/legacy_dispatcher/native/g'
git grep -l 'legacydispatcher' | xargs sed -i 's/legacydispatcher/native/g'
git grep -l 'LegacyDispatcher' | xargs sed -i 's/LegacyDispatcher/Native/g'
```

and also grepped for "legacy" in tools/codegen and fixed documentation.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D24223101

Pulled By: ezyang

fbshipit-source-id: d1913b8b823b3b95e4546881bc0e876acfa881eb
2020-10-13 08:34:43 -07:00
Edward Yang
9079aea1ac Rewrite implementation of faithful cpp signatures (#45890)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45890

This rewrite is as per my comments at https://github.com/pytorch/pytorch/pull/44087#issuecomment-701664506
I did the rewrite by reverting #44087 and then reimplementing it on top.
You may find it easier to review by diffing against master with only #44087
reverted.

There are two main ideas.

First, we now factor cpp argument processing into two phases operating
on three representations of data:

1. `FunctionSchema` - this is the source from native_functions.yaml
2. `Union[Argument, ThisArgument, TensorOptionsArgument]` - this is
   the arguments after doing some basic semantic analysis to group
   them (for TensorOptions) or identify the this argument (if this
   is a method).  There is only ever one of these per functions.
3. `Union[CppArgument, CppThisArgument, CppTensorOptionsArgument]` -
   this is the arguments after we've elaborated them to C++.  There
   may be multiple of these per actual C++ signature.

You can think of (2) as common processing, whereas (3) bakes in specific
assumptions about whether or not you have a faithful or non-faithful
signature.

Second, we now have CppSignature and CppSignatureGroup representing
the *total* public C++ API signature.  So those dataclasses are what
know how to render definitions/declarations, and you no longer have
to manually type it out in the Functions/TensorMethods codegen.

Here is an exhaustive accounting of the changes.

tools.codegen.api.types

- CppSignature and CppSignatureGroup got moved to tools.codegen.api.types
- Add new CppThisArgument and CppTensorOptionsArguments (modeled off
  of ThisArgument and TensorOptionsArguments) so that we can retain
  high level semantic structure even after elaborating terms with C++
  API information.  Once this is done, we can refine
  CppArgument.argument to no longer contain a ThisArgument (ThisArgument
  is always translated to CppThisArgument.  Note that this doesn't
  apply to TensorOptionsArguments, as those may be expanded or not
  expanded, and so you could get a single CppArgument for 'options')
- Add no_default() functional mutator to easily remove default arguments
  from CppArgument and friends
- Add an explicit_arguments() method to CppArgument and friends to
  extract (flat) argument list that must be explicitly written in the signature.
  This is everything except (Cpp)ThisArgument, and is also convenient
  when you don't care about the extra structure of
  CppTensorOptionsArguments

tools.codegen.api.cpp

- group_arguments is back, and it doesn't send things directly to a
  CppSignatureGroup; instead, it moves us from representation (1) to (2)
  (perhaps it should live in model).  Here I changed my mind from my
  PR comment; I discovered it was not necessary to do classification at
  grouping time, and it was simpler and easier to do it later.
- argument got split into argument_not_this/argument/argument_faithful.
  argument and argument_faithful are obvious enough what they do,
  and I needed argument_not_this as a more refined version of argument
  so that I could get the types to work out on TensorOptionsArguments

tools.codegen.api.dispatcher

- Here we start seeing the payoff.  The old version of this code had a
  "scatter" mode and a "gather" mode.  We don't need that anymore:
  cppargument_exprs is 100% type-directed via the passed in cpp
  arguments.  I am able to write the functions without any reference
  to use_c10_dispatcher

tools.codegen.gen

- Instead of having exprs_str and types_str functions, I moved these to
  live directly on CppSignature, since it seemed pretty logical.
- The actual codegen for TensorMethods/Functions is greatly simplified,
  since (1) all of the heavy lifting is now happening in
  CppSignature(Group) construction, and (2) I don't need to proxy one
  way or another, the new dispatcher translation code is able to handle
  both cases no problem.  There is a little faffing about with ordering
  to reduce the old and new diff which could be removed afterwards.

Here are codegen diffs.  For use_c10_dispatcher: full:

```
+// aten::_cudnn_init_dropout_state(float dropout, bool train, int dropout_seed, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
 Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, const TensorOptions & options) {
-    return _cudnn_init_dropout_state(dropout, train, dropout_seed, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
+    static auto op = c10::Dispatcher::singleton()
+        .findSchemaOrThrow("aten::_cudnn_init_dropout_state", "")
+        .typed<Tensor (double, bool, int64_t, c10::optional<ScalarType>, c10::optional<Layout>, c10::optional<Device>, c10::optional<bool>)>();
+    return op.call(dropout, train, dropout_seed, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
 }
```

Otherwise:

```
+// aten::empty_meta(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
 Tensor empty_meta(IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format) {
-    return empty_meta(size, TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(pin_memory), memory_format);
+    static auto op = c10::Dispatcher::singleton()
+        .findSchemaOrThrow("aten::empty_meta", "")
+        .typed<Tensor (IntArrayRef, const TensorOptions &, c10::optional<MemoryFormat>)>();
+    return op.call(size, TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(pin_memory), memory_format);
 }
```

Things that I probably did not get right:

- The Union[Argument, TensorOptionsArguments, ThisArgument] and
  the Cpp variants are starting to get a little unwieldy.  Not sure if
  this means I should add a supertype (or at the very least an
  alias); in some cases I do purposely omit one of these from the Union
- Code may not necessarily live in the most logical files.  There isn't
  very much rhyme or reason to it.
- The fields on CppSignature.  They're not very well constrained and
  it will be better if people don't use them directly.
- Disambiguation.  We should do this properly in #44087 and we don't
  need special logic for deleting defaulting for faithful signatures;
  there is a more general story here.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D24144035

Pulled By: ezyang

fbshipit-source-id: a185f8bf9df8b44ca5718a7a44dac23cefd11c0a
2020-10-13 08:31:54 -07:00
Sebastian Messmer
6ba6ecb048 Only use hacky_wrapper_for_legacy_signatures if an op needs it (#45742)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45742

Add a new flag to native_functions.yaml: `use_c10_dispatcher: hacky_wrapper_for_legacy_signatures`
and the codegen only wraps kernels in the aforementioned wrapper if that flag is set.
Apart from that, `use_c10_dispatcher: hacky_wrapper_for_legacy_signatures` is equivalent to `full`,
i.e. it has full boxing and unboxing support.

This greatly reduces the number of ops we apply the hacky_wrapper to, i.e. all ops marked as `use_c10_dispatcher: full` don't have it anymore.
ghstack-source-id: 113982139

Test Plan:
waitforsandcastle

vs fbcode:
https://www.internalfb.com/intern/fblearner/details/214511705/

vs base diff:
https://www.internalfb.com/intern/fblearner/details/214693207/

Reviewed By: ezyang

Differential Revision: D23328718

fbshipit-source-id: be120579477b3a05f26ca5f75025bfac37617620
2020-10-12 09:39:18 -07:00
Sebastian Messmer
6e2eee2b9d Add faithful C++ API (#44087)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44087

Each op taking a TensorOptions argument now has an additional overload in the C++ frontend where it takes scattered ScalarType, Layout, Device, bool instead of one TensorOptions argument.

If it is a c10-full op, then the scattered version calls into the dispatcher and the gathered version is a proxy calling into the scattered version.
If it is a non-c10-full op, then the gathered version calls into the dispatcher and the scattered version is a proxy calling into the gathered version.

This should minimize the amount of gathering and scattering needed.

This PR is also a prerequisite to remove the re-gathering of arguments that is currently happening in VariableKernel. Currently, VariableKernels gather arguments into a TensorOptions object
to call into the C++ API. In a PR stacked on top of this, VariableKernel will just directly call into the scattered C++ API introduced here and avoid the gathering step.
ghstack-source-id: 113355689

Test Plan:
waitforsandcastle

vs master: https://www.internalfb.com/intern/fblearner/details/216169815/

vs previous diff: https://www.internalfb.com/intern/fblearner/details/216169957/

Reviewed By: ezyang

Differential Revision: D23492188

fbshipit-source-id: 3e84c467545ad9371e98e09075a311bd18411c5a
2020-10-02 04:08:53 -07:00
Ailing Zhang
606b1a9a2e Move xla codegen to aten. (#45241)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45241

Test Plan: Imported from OSS

Reviewed By: soumith

Differential Revision: D23926750

Pulled By: ailzhang

fbshipit-source-id: f768e24a9baeca9f9df069a62d6f8b94a853a1ee
2020-09-25 18:07:32 -07:00
Sebastian Messmer
2ac7de7d53 Remove hacky_wrapper from BackendSelect kernels (#44062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44062

Previously, BackendSelect kernels were still written in the legacy way, i.e. they took one TensorOptions argument instead of scattered dtype, layout, device, pin_memory,  and they used hacky_wrapper to be callable. This caused a re-wrapping step. Calling into a BackencSelect kernel required taking the individual scattered arguments, packing them into a TensorOptions, and the kernel itself then gathered them again for redispatch.

Now with this PR, BackendSelect kernels are written in the new way and no hacky_wrapper or rewrapping is needed for them.
ghstack-source-id: 112825789

Test Plan:
vs master: https://www.internalfb.com/intern/fblearner/details/216117032/

vs previous diff: https://www.internalfb.com/intern/fblearner/details/216170194/

Reviewed By: ezyang

Differential Revision: D23484192

fbshipit-source-id: e8fb49c4692404b6b775d18548b990c4cdddbada
2020-09-25 09:04:03 -07:00
Edward Yang
6ea89166bd Rewrite of ATen code generator (#42629)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42629

How to approach reviewing this diff:

- The new codegen itself lives in `tools/codegen`. Start with `gen.py`, then read `model.py` and them the `api/` folder. The comments at the top of the files describe what is going on. The CLI interface of the new codegen is similar to the old one, but (1) it is no longer necessary to explicitly specify cwrap inputs (and now we will error if you do so) and (2) the default settings for source and install dir are much better; to the extent that if you run the codegen from the root source directory as just `python -m tools.codegen.gen`, something reasonable will happen.
- The old codegen is (nearly) entirely deleted; every Python file in `aten/src/ATen` was deleted except for `common_with_cwrap.py`, which now permanently finds its home in `tools/shared/cwrap_common.py` (previously cmake copied the file there), and `code_template.py`, which now lives in `tools/codegen/code_template.py`. We remove the copying logic for `common_with_cwrap.py`.
- All of the inputs to the old codegen are deleted.
- Build rules now have to be adjusted to not refer to files that no longer exist, and to abide by the (slightly modified) CLI.
- LegacyTHFunctions files have been generated and checked in. We expect these to be deleted as these final functions get ported to ATen. The deletion process is straightforward; just delete the functions of the ones you are porting. There are 39 more functions left to port.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bhosmer

Differential Revision: D23183978

Pulled By: ezyang

fbshipit-source-id: 6073ba432ad182c7284a97147b05f0574a02f763
2020-08-31 09:00:22 -07:00