symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops
add meta_bernoulli_
meta kernel for at::gather
get pytorch_struct to pass: meta for scatter_add, fix backward
symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86488
Approved by: https://github.com/ezyang
symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops
add meta_bernoulli_
meta kernel for at::gather
get pytorch_struct to pass: meta for scatter_add, fix backward
symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86334
Approved by: https://github.com/ezyang
- TensorGeometry supports symint
- check_size supports symint
- functorch batch rule improved symint
- Some operator support for symint in LTC
- More supported operations on SymInt and SymFloat
- More symint support in backwards formulas
This merge includes code contributions from bdhirsh and anjali411.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86160
Approved by: https://github.com/Chillee
Partially fixes: #66328
This PR:
- adds support for `ITensorList` to the dispatcher for:
- computing the dispatch key
- boxing and unboxing `ITensorList`
- modified the codegen for structured kernels:
- codegen APIs use `ITensorList` instead of `ArrayRef<Tensor>`
**Changes summary:**
- Signature changes due to the different APIs:
- dispatcher API (e.g. `BatchingRegistrations.cpp`)
- C++ API (e.g. `TensorShape.cpp`)
- Miscelaneous functions used by codegen'd functions (e.g. `FunctionalTensorWrapper.*`)
- Dispatcher changes for handling `ITensorList` correctly (e.g. `DispatchKeyExtractor.h`)
- Signature changes of `at::cat` due to the need of `const` inside `TensorBody.h`
- Forward declarations of `ITensorList` (e.g. `MethodOperators.h`)
- Codegen changes, special casing structured kernels (e.g. `gen.py`)
**Short description of structured kernels special casing:**
I introduced, mainly, 5 types of changes to the codegen for generating code depending on
whether the kernel is structured or not:
1. Added a `structured_type_override` flag to the `argument_type` function definition of
the affected APIs (mainly the dispatcher and C++ APIs).
- `api/cpp.py`, `api/dispatcher.py`, `api/native.py`
2. Added a `structured_type_override` member to the signature
classes (e.g. `CppSignature`), since `FunctionSchema` doesn't really know whether the
function is structured or not
- `api/types.py`
3. Added a `part_of_structured_group` to `NativeFunction` class, which is just a
convenient function to forward to `structured_type_override` wherever needed
- `model.py`
4. Appropriately changed the rest of the codegen, whenever it used either the signature
classes or the `arguments` function directly
5. Added a check for `const ITensorList&` type wherever there was a check for `TensorList`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73350
Approved by: https://github.com/bdhirsh
Turns out this is just a composite compliance issue. Branching on if
something requires grad or not can lead to incorrect gradients if we
have a BatchedTensor wrapping a tensor that requires grad.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84939
Approved by: https://github.com/soulitzer
This ref does more things than `torch.norm`, and it fixes a few bugs
that `torch.norm` has. This implementation and the `torch.norm`
implementation come to terms in the next PR of this stack
We put this PR before, as otherwise `test_decomp.py` was failing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81765
Approved by: https://github.com/ngimel
prod performs a sync to test for zeros as the formula is substantially
simpler if there are no zeros, but this doesn't work for meta tensors.
The double backwards formula works great in all cases though!
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81617
Approved by: https://github.com/soulitzer
This PR also adds complex support for logdet, and makes all these
functions support out= and be composite depending on one function. We
also extend the support of `logdet` to complex numbers and improve the
docs of all these functions.
We also use `linalg_lu_factor_ex` in these functions, so we remove the
synchronisation present before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79742
Approved by: https://github.com/IvanYashchuk, https://github.com/albanD
This PR is in preparation for implementing `logdet` and `slogdet` as
structured kernels + implementing them with more efficient derivatives
We implement forward AD for det. We also simplify the implementation of
the backward, and leave a note on how to implement it properly for
singular matrices. We leave thad for future work.
Note (by looking at the OpInfo) that the current implementation passes
the same tests as the one before. We skip the forward-over-backward in
the singular case, as that one was not working in the gradgrad case
either.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79487
Approved by: https://github.com/nikitaved, https://github.com/albanD
The previous PR in this stack uncovered an error in the forward over
backward for this function.
In this PR, we fix this error and we also fix the gradgrad
implementation (and make it more stable and faster using `logsigmoid`).
We also move the double backward for this function to `FunctoinsManual`
as there's no reason for it to be in `native_functions`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80083
Approved by: https://github.com/zou3519
This PR:
- Corrects the forward AD formula of `torch.sgn`.
- The reason why we can't use `auto_element_wise` for this operations is rather subtle. I left a comment.
- This, in turn, fixes a problem we had in forward-over-backward for `linalg.svd` and other spectral decompositions (and `norm`, `linalg.norm`, `linalg.matrix_norm`) that were using `torch.abs` (whose derivative is given by `torch.sgn`.
- Implement the formula for a number of missing operations `nansum`, `amax`, `amin`...
- Simplified a few formulas, most notably the forward AD for `div` and the derivative of `norm`, `linalg.norm` and `vector_norm` for `ord=+-inf`.
- Correct the formula for `mean`, `std_mean`, `var_mean` when `dim` is provided and equal to `()` (or `None`)
- A few minor improvements to `sum_backward`, `unsqueeze_multiple` and formulas depending on them
- Fix the derivatives of `std_mean` and `std_var` (complex support,
ASAN, forward AD...)
Fixes: https://github.com/pytorch/pytorch/issues/67539
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80082
Approved by: https://github.com/zou3519
The previous PR in this stack uncovered an error in the forward over
backward for this function.
In this PR, we fix this error and we also fix the gradgrad
implementation (and make it more stable and faster using `logsigmoid`).
We also move the double backward for this function to `FunctoinsManual`
as there's no reason for it to be in `native_functions`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79381
Approved by: https://github.com/soulitzer
This PR:
- Corrects the forward AD formula of `torch.sgn`.
- The reason why we can't use `auto_element_wise` for this operations is rather subtle. I left a comment.
- This, in turn, fixes a problem we had in forward-over-backward for `linalg.svd` and other spectral decompositions (and `norm`, `linalg.norm`, `linalg.matrix_norm`) that were using `torch.abs` (whose derivative is given by `torch.sgn`.
- Implement the formula for a number of missing operations `nansum`, `amax`, `amin`...
- Simplified a few formulas, most notably the forward AD for `div` and the derivative of `norm`, `linalg.norm` and `vector_norm` for `ord=+-inf`.
- Correct the formula for `mean`, `std_mean`, `var_mean` when `dim` is provided and equal to `()` (or `None`)
- A few minor improvements to `sum_backward`, `unsqueeze_multiple` and formulas depending on them
- Fix the derivatives of `std_mean` and `std_var` (complex support,
ASAN, forward AD...)
Fixes: https://github.com/pytorch/pytorch/issues/67539
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77975
Approved by: https://github.com/soulitzer
Fixing the forward AD for `sgn` in the next PR of this stack uncovered a
number of issues with the derivatives of `l1_loss`. Upon inspection,
`l1_loss` was just implemented as a composite function, but it was not
differentiable. This PR makes it a fully differentiable function.
As a side note, `l1_loss_out` was incorrect in a number of ways. Even
more, it is not exposed to the public as `F.l1_loss` does not accept an
`out=` parameter. As such it is not even tested. I wonder how useful is
to have `out=` variants for loss functions if we don't expose them at
all. Even more, I wonder how useful is to have `_out` variants for loss
functions, given that their most normal use case is to return just a
real number cc jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79804
Approved by: https://github.com/zou3519, https://github.com/malfet
Fixing the forward AD for `sgn` in the next PR of this stack uncovered a
number of issues with the derivatives of `l1_loss`. Upon inspection,
`l1_loss` was just implemented as a composite function, but it was not
differentiable. This PR makes it a fully differentiable function.
As a side note, `l1_loss_out` was incorrect in a number of ways. Even
more, it is not exposed to the public as `F.l1_loss` does not accept an
`out=` parameter. As such it is not even tested. I wonder how useful is
to have `out=` variants for loss functions if we don't expose them at
all. Even more, I wonder how useful is to have `_out` variants for loss
functions, given that their most normal use case is to return just a
real number cc jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78257
Approved by: https://github.com/jbschlosser
This PR heavily simplifies the code of `linalg.solve`. At the same time,
this implementation saves quite a few copies of the input data in some
cases (e.g. A is contiguous)
We also implement it in such a way that the derivative goes from
computing two LU decompositions and two LU solves to no LU
decompositions and one LU solves. It also avoids a number of unnecessary
copies the derivative was unnecessarily performing (at least the copy of
two matrices).
On top of this, we add a `left` kw-only arg that allows the user to
solve `XA = B` rather concisely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74046
Approved by: https://github.com/nikitaved, https://github.com/IvanYashchuk, https://github.com/mruberry
This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.
We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.
We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.
Fixes https://github.com/pytorch/pytorch/issues/61657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77634
Approved by: https://github.com/malfet